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a b s t r a c t

Individuals with different phenotypes can have widely-varying responses to natural selection, yet many
classical approaches to evolutionary dynamics emphasize only how a population’s average phenotype
increases in fitness over time. However, recent experimental results have produced examples of pop-
ulations that have multiple fitness peaks, or that experience frequency-dependence that affects the
direction and strength of selection on certain individuals. Here, we extend classical fitness gradient
formulations of natural selection in order to describe the dynamics of a phenotype distribution in terms
of its moments—such as the mean, variance, and skewness. The number of governing equations in
our model can be adjusted in order to capture different degrees of detail about the population. We
compare our simplifiedmodel to directWright–Fisher simulations of evolution in several canonical fitness
landscapes, andwe find that our model provides a low-dimensional description of complex dynamics not
typically explained by classical theory, such as cryptic selection forces due to selection on trait ranges,
time-variation of the heritability, and nonlinear responses to stabilizing or disruptive selection due to
asymmetric trait distributions. In addition to providing a framework for extending general understanding
of common qualitative concepts in phenotypic evolution – such as fitness gradients, selection pressures,
and heritability – our approach has practical importance for studying evolution in contexts in which
genetic analysis is infeasible.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The effects of evolutionary forces may be apparent in natural
populations even when their underlying genetic consequences are
not known. The size of river guppies increases when their natural
predators are depleted (Reznick et al., 1997); the beaks of Darwin’s
finches grow larger after droughts (Grant and Grant, 1995); and
mammals grow smaller in response to climate change (Gingerich,
2003). These and other natural and experimental studies demon-
strate that rapid selection can produce noticeable changes in spe-
cific traits, underscoring the importance of considering phenotypic
models of natural selection. Thesemodels are particularly relevant
to studies in the field or of the fossil record where genetic analysis
is unavailable or infeasible (Gingerich, 1976).

A widely-used framework for such theories is the fitness land-
scape (Wright, 1932), an abstract function that describes the
collective survival or reproductive benefits conferred by a given
phenotype: an evolving population typically approaches a locally
or globally maximum value in this space, subject to constraints
on its rate of adaptation. But the underlying dynamics of this
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processmay depend strongly on the context (Mustonen and Lässig,
2009), and molecular techniques have only recently begun to
shed light on the individual steps of adaptation and the inter-
mediate phenotypes they produce (Poelwijk et al., 2007; Hartl,
2014). Moreover, macroscale analyses have produced examples
of non-monotone fitness functions with elaborate, multipeaked
topographies subject to strong frequency dependence (Martin and
Wainwright, 2013), selection that acts on trait ranges in addition
to average values (Shen et al., 2008), and selection forceswith non-
linear effects on metric traits (Miles, 2004). These studies indicate
the need for simple, analytical models that can provide heuristic
insight into the complex dynamics of phenotypic adaptation. Of
particular importance are cases in which traditional experimental
metrics, such as the realized heritability or selection response,
have complex time-dependence over long timescales (Björklund
et al., 2013; Steppan et al., 2002), rendering derived experimental
quantities such as selection coefficients insufficient as large-scale
descriptors of population dynamics.

Many classical approaches to phenotypic evolutionary theory
readily describe the evolution of a bell-shaped and fixed-width
trait distribution within a given fitness landscape, resulting in the
widely-known result that the rate of adaptation of the mean trait
is directly proportional to the gradient of themean fitness (Arnold,
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1992; Lande, 1976; Abrams and Matsuda, 1997; Cortez andWeitz,
2014). This depiction of evolution as a fitness gradient-climbing
problem is particularly intuitive, and it mirrors earlier work on the
adaptive landscape of individual genes (Wright, 1932). However,
many phenotypes fail to satisfy these conditions (Karlin, 1987;
Shen et al., 2008; Bolnick et al., 2011), as a result of which many
experimental and theoretical studies have noted strong limitations
on the applicability of fitness gradient dynamics (Waxman and
Gavrilets, 2005; Lynch and Walsh, 1998; Barton and Polechová,
2005; Turelli and Barton, 1994). Efforts to establish more general
rules for the evolution of an arbitrary trait distribution typically
reformulate the underlying mathematics in terms of agent-based
rules or a stochastic transmission kernel (Nowak and Sigmund,
2004; Sato and Kaneko, 2007; Sasaki and Ellner, 1995; Prügel-
Bennett, 1997); however, these alternative formulations are diffi-
cult to compare directly with classical fitness gradient dynamics,
and they typically introduce new assumptions regarding the un-
derlying genetic processes or functional forms of the trait distribu-
tion or fitness.

Here, we develop a general model of phenotypic evolution that
seeks to reduce functional constraints on the fitness or trait by
using a moment series expansion of the fitness landscape. Our ap-
proach has its origin in classical approaches that describe evolution
of the mean trait as a fitness gradient-climbing problem, but we
add additional dynamical equations for the variance, skewness,
kurtosis, and finer-scale statistical features of the trait distribution.
By adding or removing dynamical equations that describe various
moments of the trait distribution, the level of detail our model
captures about the evolutionary dynamics may be tuned. Impor-
tantly, our model reduces to a classical fitness gradient model
when only the mean trait is allowed to vary. Our model explicitly
relates the topology of the fitness landscape to the timescales (and
thus dynamical relevance) of various phenomena through a series
of coupling constants, which we compute analytically for several
canonical fitness landscapes in a series of demonstrative examples.
Using these examples, we show how even a simple generalization
of classical fitness gradient dynamics can lead to a series of surpris-
ing effects in the evolutionary dynamics, including cryptic forces of
selection that cause changes in the trait distribution evenwhen the
local fitness gradient is zero, as well as suppression of disruptive
selection due to asymmetry and skewness in the trait distribution.
We also show that our model can be re-formulated in terms of the
coupled dynamics of the narrow-sense heritability and the mean
fitness, and we show how these two quantities may jointly evolve
under various conditions.

2. Model

Ourmodel is based on a series expansion of the trait distribution
in terms of its moments (such as the mean trait, trait variance, and
trait skewness). These quantities correspond to population-level
statistical observables for a natural population, such as average
height and height variation, which have dynamics that may be
recorded across time in lieu of the full trait distribution. Under
our approach, each moment has a separate dynamical equation,
which is coupled to the remaining moments. For example, vari-
ance in the range of traits (such as height variation among a
subgroup) may affect how the mean height changes over time;
likewise, asymmetry (skew) in the height distribution can affect
the dynamics of the trait variance. The strength and magnitude
of the coupling of each moment’s dynamics to others depend on
the specific fitness landscape, and can be summarized in terms of a
set of ‘‘coupling coefficients’’ for the landscape. Our basic approach
is shown schematically in Fig. 1, and below we describe how we
derive dynamical equations for the mean trait ˙̄z, trait range σ̇ , and
mean fitness ˙̄w. We also describe below the assumptions of our
approach, as well as the relationship between our approach and
series-based approaches developed by others.

2.1. Trait mean dynamics in an arbitrary phenotype distribution

We follow the classical approach to deriving phenotypic evolu-
tion originally developed by Lande (Lande, 1976).We startwith the
breeder’s equation, which relates the dynamics of the trait mean z̄
to its change after a period of selection

˙̄z =
V
σ 2 (z̄w − z̄), (1)

where the mean trait value z̄, mean fitnessW , and mean trait after
selection z̄w are defined in terms of statistical averages over the
entire population,

z̄ =

∫
zp(z)dz, z̄w =

∫
zp(z)

W (z)

W
dz,

W =

∫
W (z)p(z)dz.

(2)

Here p(z) is the frequency of the trait z in the population,W (z) is an
individual’s fitness as a function of its trait. These integrals, as well
as all integrals hereafter, are assumed to be taken over the full trait
range z ∈ (−∞, ∞). The prefactor V/σ 2 in Eq. (1) is equivalent to
the narrow-sense heritability h2 of the trait, with V representing
the additive genetic variance. Eq. (1) incorporates the primary
assumptions regarding the underlying genetics; namely, that there
is no direct gene-environment interaction, and that there is a linear
regression between the selection differential and the mean trait
value over short timescales (Lande, 1979; Bulmer, 1971) (although
the slope of this regression, h2, need not be constant). In many
previous studies in which Eq. (1) appears, the phenotypic variance
σ 2 is also assumed to be fixed, either due to logarithmic ranges in
the values of metric traits that suppress the magnitude of fluctu-
ations in trait variance, or due to the assumption of a fixed trait
distribution shape that becomes a Gaussian distribution after an
appropriate nonlinear transformation (Lande, 1979, 1976).Wewill
relax this requirement here, in order to generalize the phenotypic
dynamics equations originally derived by Lande (Lande, 1976).

Constancy of genetic variance V must be decided empirically
for a given system under study; in general, V may change due
to drift or direct gene-environment interactions (Bulmer, 1971;
Turelli, 1988; Steppan et al., 2002). However, in the model of
phenotypic evolution presented here, as in similar approaches
based on the dynamics of single continuous traits (Bulmer et al.,
1980; Falconer, 1981; Jones et al., 2003), V may be assumed to
vary much more slowly than the phenotypic variance σ 2 pro-
vided that there is linkage equilibrium, weak selection, or a near-
equilibrium trait distribution. Additionally, for cases in which
V changes quickly, such as during periods of strong directional
selection or from transient effects such as the accumulation of
linkage disequilibrium, rapid compensatory effects (for example,
recombination) can allow V to stabilize at a well-defined average
value over long timescales (Björklund et al., 2013; Reznick et al.,
1997). Accordingly, low or stationary genetic variance has been
reported in certain experimental systems that may satisfy these
conditions (Garant et al., 2008).

Here, we use a standardized trait distribution p((z − z̄)/σ ) and
also parametrize the fitness as W (z − cz̄), where c is a positive
constant dependent the systembeing studied. Any arbitrary fitness
landscape may be expressed in this form via a Taylor expan-
sion around the mean trait; however for some fitness landscapes
this series cannot be truncated, and so below we focus on the
commonly-studied cases of continuous, metric traits for which
truncation is permissible (Bulmer et al., 1980; Falconer, 1981). We
note that the two cases c = 0 and c = 1 are the most common
in previous models: c = 0 corresponds to a trait that directly af-
fects survival independently of other individuals in the population
(examples include metabolic efficiency, camouflage coloration, or
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Fig. 1. Overview of modeling approach. (Left) An initial distribution of traits in a population is parametrized into an arbitrary number of moments (the mean trait, trait
range, skew, kurtosis, etc.), which, collectively, describe the full population at the initial time t0 . The modeled univariate trait is abstract, but can be thought of as a metric
feature that affects individual fitness (e.g. height, fin length, walking speed). (Middle) Using the breeder’s equation, a known fitness landscape, and a series expansion of the
trait distribution, a set of ordinary differential equations is derived that describes the time-evolution of each moment of the trait distribution, with the moment values in
the initial trait distribution acting as initial conditions. (Right) The solutions of these differential equations at some later time may then be used to reconstruct an estimate
of the full trait distribution at that time.

immune system competency), whereas c = 1 corresponds to a
trait that affects fitness of a given individual only relative to others
in the population (examples include secondary sex characteristics
or running speed relative to a herd). Using this form of the fitness
function, taking the derivative of both sides of Eq. (2) with respect
to z̄ yields a simple relationship between an individual’s fitness
landscape and the population mean fitness,

dW
dz̄

= (1 − c)
∫

dp(z)
dz̄

W (z)dz. (3)

See Supplementary Appendix B for full derivation. We note that if
c = 1, then dW

dz̄ = 0; thuswhen the fitness landscape depends only
on the difference between each individual trait and the trait mean,
the mean fitness itself cannot depend on the mean trait.

Next, we assume that the trait distribution before selection,
p(z), is separable into a Gaussian partN [z̄, σ ](z) and a dimension-
less non-Gaussian component f , which without loss of generality
we express in terms of the dimensionless standardized coordinate
z̃ = (z − z̄)/σ ,

p(z) =

(
1

√
2πσ 2

e−
(z−z̄)2

2σ2

)
f (z) = N [z̄, σ ](z) f

(
z − z̄

σ

)
. (4)

We note that f = 1 corresponds to a purely Gaussian trait distri-
bution, in which case our theory recreates standard evolutionary
dynamics (Lande, 1976; Abrams and Matsuda, 1997; Cortez and
Weitz, 2014; Slatkin, 1970).

Inserting Eqs. (3) and (4) into Eq. (1), we arrive at a dynamical
equation for the mean trait of a non-Gaussian trait distribution,

˙̄z =
V

W

(
1

1 − c
dW
dz̄

)
+

V

σW

∫
N [z̄, σ ](z)f ′(z̃)W (z)dz. (5)

where each term arises from the individual terms in Eq. (3) fol-
lowed by integration by parts, during which a surface term van-
ishes due to compactness of p(z) (see Supplementary Appendix B).
Asymptotic analysis confirms that the first term vanishes when
c = 1 due to a first-order zero in dW

dz̄ at c = 1 (see Supplementary
Appendix C). The first term in Eq. (5) corresponds to a classical
fitness gradient dynamics model, and represents the complete
dynamics if the trait distribution is Gaussian (f ′

= 0) (Cortez
and Weitz, 2014; Gilpin and Feldman, 2017). The second term
determines how the higher-order moments of the trait distribu-
tion affect the evolutionary dynamics. Importantly, this new term
depends explicitly on the values of higher-order moments at each
timestep. Therefore, Eq. (5) can only be used to determine the
dynamics if additional differential equations are specified for the
trait variance, skewness, etc., which makes full determination of

the dynamics a ‘‘moment closure’’ problem because the dynamics
of the nth moment will, in general, depend on the (n + 1)th mo-
ment (Whittle, 1957; Smerlak and Youssef, 2017). However, Eq. (5)
can still be used to find the mean trait equilibrium and its stability
as functions of the other moments.

We next expand the trait distribution in Eq. (4) as a Gram–
Charlier A series,

p(z) = N [z̄, σ ](z)

(
1 +

∞∑
n=3

cnHen

(
z − z̄

σ

))
, (6)

where the expansion coefficients cn are uniquely determined by
the moments of the trait distribution (see Supplementary Ap-
pendix A). We use a Gram–Charlier series, as opposed to other
series, in order to formulate our model as a perturbation from
classical evolutionary dynamics for which cn = 0. Because the
trait distribution is a probability distribution, we expect that the
Gram–Charlier series will have favorable truncation properties in
its coefficients cn, as well as greater numerical stability, relative to
a traditional power series. Additionally, unlike other expansions of
probability distributions (such as the Edgeworth series), theGram–
Charlier series allows the action of individual cumulants on the
dynamics to be isolated.

Inserting the rightmost parenthetical term of Eq. (6) into Eq. (5)
as f , we use the property of Hermite polynomials He′

n = nHen−1
and the change of variables z̃ = (z̄ − z)/σ to find,

˙̄z =
V

W

(
1

1 − c
dW
dz̄

)
+

V

σW

∞∑
n=3

cn nWn−1, (7)

where the first-order term corresponds to classical phenotypic
evolutionary theory. In the higher-order terms, the singly-indexed
family of integrals Wn is given by

Wn ≡

∫
N [0, 1](z̃)Hen(z̃)W (σ z̃ + z̄) dz̃. (8)

This equation represents a projection of the fitness landscape onto
a basis of Hermite polynomials, with finer-scale features in the
fitness landscape being represented by larger values of n in the se-
ries. However, if the fitness landscape is sufficiently smooth, there
always exists some n above which the sequence Wn continuously
decreases, suggesting that a finite set ofWn is sufficient to describe
many simple fitness landscapes.

We refer to the seriesWn as the ‘‘coupling coefficients’’ because
the form of Eq. (7) suggests that the values ofWn represent the de-
gree of coupling between the fitness landscape and progressively
larger cumulants of the trait distribution. Larger-scale features of
the fitness landscape affect the dynamics over longer timescales,
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and thus appear in lower-orderWn; conversely, higher-order cou-
pling coefficients provide increasingly precise information about
the landscape, and small-scale dynamical changes within it. Thus
Wn serve a similar function to the individual selection differentials
described in previously-developedmodels of non-Gaussian breed-
ing value distributions usingmultilocus genetic theory (Turelli and
Barton, 1994; Bürger, 1991). Each Wn may, in principal, depend
on lower-order cumulants of the trait distribution; however this
dependence reduces to a scaling factor (see Appendices for further
discussion).

Importantly, because the coupling coefficientsWn depend only
on lower-order cumulants of the fitness landscape, the series of dy-
namical equations may be closed and then computed. The integro-
differential dynamics of an arbitrary trait distribution and fitness
landscape canbe expressed as a series of coupled ordinary differen-
tial equations for the time-varying moments (appearing in the in-
dividual cn of the Gram–Charlier series), with the fitness landscape
appearing only through the coupling terms Wn. For most fitness
landscapes each individualWn is straightforward to compute ana-
lytically (using generating functions); however, for more complex
fitness landscapes they may be computed numerically due to the
orthogonality properties of Hermite integrals (Babusci et al., 2012).
In either case, the dependence of Wn on lower moments (such as
z̄ and σ ) appears only as a shift or scaling of the integrand, and so
the dependence of the analytical or numerical solution on these
moments has predictable properties due to shifting properties of
Hermite polynomials (see Supplementary Appendix H). For this
reason, a set of Wn may be ‘‘pre-computed’’ for a given fitness
landscape and then inserted as explicit terms into the dynamical
equation (7). The dynamics of the trait distribution subject to
this fitness landscape can then be determined without the need
to perform additional time-dependent integrals over the fitness
landscape—as lower moments evolve, the known solutions can
be shifted accordingly. If the fitness landscape were to change
in time, any change arising from a process independent of the
trait distribution (e.g. rainfall variation due to large scale weather
patterns, or depletion of predators due to overfishing) would allow
the time variation of each Wn to be solved separately from the
trait distribution dynamics. The resulting set ofWn(t) may then be
inserted into Eq. (7) to yield the trait dynamics.

2.2. Trait variance dynamics

Themethodused above to derive the dynamics of the traitmean
may be employed to derive corresponding dynamical equations
for any moment or cumulant of the trait distribution. Here, we
determine the dynamical equation for the trait standard deviation
(and thus variance) using a similar method to that above.

As with the trait mean, we assume that the trait variance M ≡

σ 2 has linear heritability with dynamics specified by
d
dt

(σ 2) = h2
σ (σ

2
w − σ 2), (9)

whereh2
σ is the variance heritability, or the degree towhich thephe-

notypic variance in one generation influences the phenotypic vari-
ance of the next generation. σ 2

w is the trait variance after selection,
which is defined in a manner analogous to z̄w . If the (unmodeled)
recombination and mutation processes are sufficiently smooth,
such a linear relationship represents the lowest-order term in a
series expansion about the case in which the trait variance varies
slowly, due to the summation properties of cumulants of random
variables (Rattray and Shapiro, 2001; Turelli and Barton, 1990).
This relation follows earlier work on the infinitesimal model (Bul-
mer, 1971), inwhich a given trait is continuous due to an effectively
infinite number of individual loci contributing to it. Below, we
further discuss the limitations of a linear heritability relation.

If the trait distribution has the separable formEq. (4), then it can
be shown (see Supplementary Appendix D) that Eq. (9) simplifies
to a dynamical equation of the form,

σ̇ =
U

W

(
dW
dσ

+
1
σ

∫
z̃ N [0, 1](z̃)W (σ z̃ + z̄)f ′ dz̃

)
,

where U ≡ (σ hσ )2/2. Inserting the Gram–Charlier series (Eq. (6))
for p(z) and exploiting the properties of the Hermite polynomials
results in a final expression,

σ̇ =
U

W

dW
dσ

+
U

σW

∞∑
n=3

cn n
(
(n − 1)Wn−2 + Wn

)
. (10)

As with the mean trait dynamics equation (7), the variance dy-
namics (and thus the width of the trait distribution) simplifies to
a gradient of the mean fitness, plus an infinite summation over
Wn that takes into account increasingly fine-scale moments of the
trait distribution. Using this construction technique, the dynamics
of any arbitrary moment or cumulant of the trait distribution may
be expressed as a dynamical equation with a similar form.

2.3. Mean fitness dynamics

Based on the forms of Eqs. (7) and (10), the dynamics of the
mean fitness are given by

˙W =
dW
dz̄

˙̄z +
dW
dσ

σ̇ +

∞∑
i=3

dW
dκi

κi, (11)

where κi are the cumulants of p(z). Because all derivatives of
W may themselves be expressed in terms of the cumulants of
the trait distribution p(z), the dynamics of W do not involve an
additional dependent variable in the dynamical system. The form
of ˙W suggests that, even in the absence of additive genetic variance
(V = 0) or in the case of a fixed mean trait ˙̄z = 0, the mean fitness
may continue to change due to the contribution of higher-order
cumulants of the trait distribution to the dynamics. These higher-
order effects are absent in the standard breeder’s equation andwill
be discussed further below.

2.4. Gradient dynamics with leading-order corrections

Here, we simplify Eqs. (7) and (10) to account for only the
leading-order effects of non-Gaussian moments in the trait distri-
bution, resulting in a closed form for the dynamical equations.

The general framework used above for deriving ˙̄z and σ̇ may,
in principle, be used to derive dynamical equations for an arbi-
trary number of moments of the trait distribution. In these cases,
a Gram–Charlier series with a non-Gaussian leading-kernel may
be preferable (Berberan-Santos, 2007). However, in the following
sectionswe focus primarily on the dynamics of the first and second
moments of the trait distribution ( ˙̄z and σ̇ derived above) because
in many standard fitness models, selection acts directly on the
mean and width of the trait distribution, but not necessarily the
skewness and higher moments. As a result, the terms in the series
Wn decrease quickly inmagnitude, causing the dynamics of z̄ andσ
to be nearly uncoupled from the dynamics of highermoments. This
is equivalent to assuming that higher-order cumulants of the trait
distribution affect the dynamics solely as fixed parameter values
in the series terms in Eqs. (7) and (10). This restriction implies
that higher moments of the trait distribution have zero effective
heritability, and that natural selection, togetherwith reproduction,
mutation, and recombination, causes thesemoments to varymuch
more slowly than the mean and variance (Prügel-Bennett and
Shapiro, 1997; Smerlak and Youssef, 2017). However, if higher
moments vary continuously due to natural selection, equilibria in
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z̄ and σ 2 found under these assumptions would remain the same
because the forms of their dynamical equations remain constant,
although their stability may be further constrained.

In order to illustrate potential applications and to provide
closed-form results, inwhat followswe truncate at fourth order the
infinite series cn appearing in Eqs. (7) and (10). This fourth-order
closure is used in order to isolate the effects of asymmetry (c3)
and heavy-tailedness (c4) on the dynamics of the trait distribution:
neither effect can be described by the original breeder’s equation
due to its implicit assumption of a Gaussian trait distribution.
In principle, additional Wn can be added to account for other
effects; however, the contribution of these higher-order terms
to the dynamics of lower-order moments is bounded due to the
scaling properties of the Gram–Charlier series (cn ∼ 1/σ n). Similar
cumulant closure relations appear in moment-based models of
ecological dynamics (Whittle, 1957; Matis and Kiffe, 1999; Krish-
narajah et al., 2005). In previous work by other authors (Turelli
and Barton, 1994; Bürger, 1991), the series terms in a discrete-
time cumulant dynamical model were computed explicitly for the
case of truncation selection, for which the short-time dynamics
primarily depend on the leading moments. Additionally, in some
discrete-time models of multilocus selection, the cumulant dy-
namical equations intrinsically contain a finite number of terms
and cross terms (Barton and Turelli, 1991; Neher and Shraiman,
2011).

Together, these assumptions result in a simplified set of dynam-
ical equations,

˙̄z =
V

W

(
1

1 − c
dW
dz̄

+
1
2σ

(
γW2 +

1
3
(k − 3)W3

))
(12)

σ̇ =
U

W

(
dW
dσ

+
1
2σ

(
γ (W2 + W0) +

1
3
(k − 3)(W3 + 2W1)

))
,

(13)

where γ and k are, respectively, the skewness and kurtosis of
the trait distribution. While γ may take any value, the kurtosis is
mathematically bounded from below by k ≥ γ 2

+ 1. Together,
Eqs. (12) and (13) may be considered a first-order ‘‘correction’’ to
the classical fitness gradient dynamics equation, and they account
for the leading-order effects of non-Gaussian features of the trait
distribution. When the fitness landscape is centered (c = 1), the
first terms vanish from both of these equations. In this case, if
the trait distribution itself is purely Gaussian (γ = 0, k = 3),
then the remaining terms vanish from the right hand sides of
both equations and the trait distribution evolves under classical
phenotypic evolutionary theory. However, if the trait distribution
is non-Gaussian but c = 1, then z̄ and σ will vary entirely due to
the non-Gaussian components of the trait distribution.

3. Assumptions and related models

Our model is comparable to moment-series approaches previ-
ously used to study natural selection in phenotypic and genotypic
systems under various assumptions (Neher and Shraiman, 2011;
Barton and Turelli, 1987; Bürger, 1991; Zeng, 1987; Turelli and Bar-
ton, 1994; Smerlak and Youssef, 2017; Bürger, 1993); we review
these approaches and in greater detail in Supplementary Appendix
K. As in previous models, we assume that the full dynamics of the
trait distributionmaybe approximatedby a finite series of ordinary
differential
equations, thus reducing a complex partial differential equation
problem to a lower-dimensional moment evolution problem.
Mathematically, the set of techniques upon which we base our
analysis parallels those found in models of genetic processes un-
der the infinitesimal model, in which a given continuous trait is

assumed to depend on an arbitrary number of alleles—in par-
ticular, the use of a Gram–Charlier series as a starting point for
cumulant iteration equations was pioneered in genetics by Zeng
(1987), as well as by Turelli and Barton (1994). Additionally, we
note that several related works have focused on the distribution
of fitness values (Good and Desai, 2013; Neher and Shraiman,
2011), including recent work producing the intriguing result that
many fitness distributions asymptotically approach a fixed class of
distributions (Smerlak and Youssef, 2017).

Our assumption of a linear heritability for higher cumulants,
Eq. (9), represents the primary assumption of our model regarding
the underlyingmechanisms of genetic inheritance in our system; it
thus introduces the primary limitations of this purely phenotypic
approach because it does not include an explicit inheritancemech-
anism. For extremely strong selection (leading to large changes in
the trait distribution within one generation), our model may fail
due to both the continuous time assumption and the presence of
higher-order terms in Eq. (9). The form of these terms depends
on the underlying genetic process, and their general form has
previously been found usingmultilocus theory (Turelli and Barton,
1994; Barton and Turelli, 1991). These subleading terms affect the
dynamics over long timescales, and may alter the stability criteria
of equilibria.

Our continuous time phenotypic equations may be compared
to previous work on cumulant dynamics that treat selection as
a discrete-time repeated sampling process weighted by the fit-
ness (Rogers and Prügel-Bennett, 2000). Thus we test our findings
below against a simulated Wright–Fisher process, and we find
general agreement (see Supplementary Appendix M for details
of this numerical work). We thus emphasize that our model is
best applied to the study of short-term phenotypic evolutionary
trends when genetic assays are unavailable or infeasible; however,
over longer timescales in which the additive genetic variance pa-
rameter V varies, we expect high-order effects in heritability to
manifest. These limitations are consistent with classical usages of
‘‘gradient dynamics’’ models (which ourmodel generalizes), which
have found particular utility for the study of coupled ecological
and evolutionary processes (Cortez andWeitz, 2014; Lande, 1976;
Abrams and Matsuda, 1997; Gilpin and Feldman, 2017).

4. Results

4.1. Cryptic forces of selection arise from non-Gaussian trait distribu-
tions

In classical phenotypic evolution, the first term in Eq. (12) is
associated with the ‘‘force of selection’’ on the trait mean (Lande
and Arnold, 1983). However, the remaining terms in Eqs. (12) and
(13) show that the trait distribution can change even when this
term is zero, allowing the trait distribution to evolve in the absence
of any apparent force of selection. These cryptic selection forces
can have significant effects on the overall dynamics of natural
selection.

As a demonstration of this effect, Fig. 2 shows the behavior
of the system Eq. (12), Eq. (13) relative to a null model in which
the trait distribution is always Gaussian (in which case all terms
containing Wn vanish in the dynamical equations). The figure il-
lustrates two separate cryptic forces of selection: the excess selec-
tion force on the mean trait (left plots) and the excess selection
force on the trait variance (right plots). For the figure, we use
a simple fitness landscape consisting of exponential directional
selection (Lande, 1981; Turelli and Barton, 1990; Balagam et al.,
2011),

W = W0es z . (14)

Such a landscape represents limiting case in several common con-
texts, including selection on metric traits (which frequently have
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Fig. 2. Cryptic forces of selection under directional selection. Top: The excess force of selection due to the non-Gaussian form of the trait distribution, for the mean trait
dynamics (left) and trait standard deviation dynamics (right). Colored shading indicates the relative direction and magnitude of the cryptic terms in Eqs. (12) and (13),
with red (blue) indicating cryptic forces that accelerate (retard) the growth of each moment. Shading runs from −1 (deepest blue) to 1 (darkest red). Lower plots represent
example dynamics of the mean and standard deviation for representative points on each color plot. White circles on upper plots indicate parameter values (γ , s) used for
the trajectories in the lower plots: the gray trace indicates classical fitness gradient dynamics with an unperturbed Gaussian trait distribution, while red and blue traces
indicate cases in which higher trait moments speed or hinder the evolutionary dynamics, respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

logarithmic ranges) (Karlin, 1987; Lynch and Walsh, 1998), evo-
lution of biochemical reactions subject to microscale energetic
constraints (Tsimring et al., 1996; Haldane et al., 2014), and cases
in which fitness scales with mutation count (Tripathi et al., 2012;
Saakian et al., 2014). The parameter s in Eq. (14) describes the
relative strength of selection on the trait z. For this fitness land-
scape, the individual coupling coefficients are observed to obey the
general relationship Wn ∼ sn (Supplementary Appendix G); thus
the broadest features of the fitness landscape (lowest order Wn)
contribute the most to directional selection.

The upper portion of the figure describes the relativemagnitude
of the excess force of selection as a function of the trait skewness
γ and the selection strength s; for simplicity, the kurtosis k is held
fixed at its theoretical minimum k = γ 2

+ 1. At the origin, the
trait distribution is Gaussian and so the cryptic selection force is
zero; however, as either the skewness γ or the selection strength
s increase, the relative contributions of the non-Gaussian terms
in Eq. (12), Eq. (13) increase. Red regions in Fig. 2 correspond to
cases in which the cryptic selection force is positive (and thus
assists directional selection), whereas blue regions correspond to
cases in which the non-Gaussian contributions retard directional
selection. The plot suggests that positive skewness (corresponding
to a trait distributionwith a long tail of large trait values) generally
speeds the evolutionary dynamics of both the trait mean and trait
variance, primarily due to the added contributions of extremal in-
dividuals. The opposite is true for negatively-skewed populations
in which most individual trait values exceed the trait mean, due to
outlier individuals producing offspring with lower fitness.

In the lower portions of the figure, trajectories of z̄(t) and σ (t)
are shown for a numerically-constructed non-Gaussian trait dis-
tribution (Supplementary Appendix L) using (γ , s) values marked
by open circles in the blue and red regions of the upper plots;
for comparison, a trajectory consisting of the ‘‘null’’ case of a
Gaussian trait distribution is shown in gray. The dynamics of each

distribution relative to the Gaussian case proceed as predicted
by the magnitude of the cryptic force, with the primary advan-
tage/detriment due to skewness occurring initially before the rate
of evolution eventually stabilizes. Notably, directional selection
causes a continued increase in the mean trait (z̄ → ∞ as t → ∞),
but the trait distributionwidth σ stabilizes to a constant value that
is proportional to the skewness. Thus the effect of non-Gaussian
features in the trait distribution may manifest experimentally as
a constant variance that is larger or smaller than that predicted
under classical evolutionary theory.

In Supplementary Appendix M, we compare these results to
Wright–Fisher simulations of phenotypic evolution in a popula-
tion initialized to the same starting values of the mean, variance,
skewness, and kurtosis as was used in these equations, and we
find general agreement. In the simulations, as in real popula-
tions, the values of the skewness and kurtosis drift over time due
to accumulated sampling errors (this corresponds to a timescale
over which the ‘‘fixed cumulant’’ assumption above is no longer
valid). However we observe that trait means and variances tend
to drift monotonically under exponential directional selection, and
so even over long timescales the calculated direction of the cryptic
force of selection correctly predicts the dynamics relative to the
Gaussian distribution.

4.2. Transient evolutionary responses to stabilizing and disruptive
selection

In addition to generating qualitatively different dynamics, non-
Gaussian features of the trait distributionmay affect the long-term
duration and direction of natural selection. In order to illustrate
this effect in a fitness landscape with a variable number of local
maxima, we next consider a general fitness landscape described
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by an arbitrary polynomial,

W (z) = W0 +

∞∑
m=1

αm(z − cz̄)m, (15)

where the relativemagnitudes of the various coefficientsαm deter-
mine the number of local maxima and minima of the landscape. In
general, if the largest non-zero αm is positive, then for large values
the fitness landscape looks like a ‘‘U’’ (limz→∞ W (|z|) = ∞), and so
the value of the mean trait z̄ eventually diverges: natural selection
proceeds indefinitely in the system as the mean trait continuously
increases. Sub-leading terms in the polynomial equation (15) in-
duce short term transients that may affect the dynamics only tem-
porarily depending on the initial conditions. Globally, however,
natural selection will proceed continuously in a U-shaped land-
scape, as has been reported experimentally (Kupriyanova, 2014).
Conversely, if the largest non-zero αm is negative, then the fitness
landscape looks like a hill at large z and so the mean trait and trait
variance will always eventually equilibrate at an intermediate sta-
ble solution—in which case natural selection proceeds transiently
until this solution is reached (Cortez and Ellner, 2010).

We can investigate themanner in which skewness and kurtosis
affect the timescale of natural selection by studying the specific
case of a quartic fitness landscape under transient natural selection
(αm = 0 for m > 4; α4 < 0). This landscape can have either one
or two local maxima depending on the relative magnitudes of α2
and α4 in Eq. (15). Thus for a continuous, unbounded trait, a quartic
fitness landscape represents the simplest landscape that canmodel
both stabilizing (one maxima) or disruptive (two maxima) selec-
tion (Gilpin and Feldman, 2017).

For each value of the skewness γ and kurtosis k, the equilib-
rium solutions of Eqs. (12) and (13) are independent of the initial
conditions and can be found analytically along with the Jacobian
matrix describing their local stability. Fig. 3 shows plots of the
maximum eigenvalue of this Jacobian matrix associated with the
intermediate phenotype, parametrized by the skewness γ and
kurtosis k (the kurtosis lower bound k > γ 2

+ 1 is indicated
by a solid gray line). For cases in which the dynamical equations
yield multiple solutions, the intermediate equilibrium phenotype
is defined as the solution of Eqs. (12) and (13) with z̄ closest to 0. In
the blue regions on the plots, this intermediate phenotype is stable
and so the mean trait approaches this point. In the red regions of
the plots, the intermediate phenotype is unstable and so the mean
trait instead approaches another, extremal equilibrium point. The
relative darkness of the plot colors represents the relative speed
of the evolutionary dynamics: darker blue indicates that the inter-
mediate phenotype is achieved relatively quickly, while darker red
indicates that extremal phenotypes are reached quickly.

The point γ = 0, k = 3 on each plot corresponds to the
default case of a purely Gaussian trait distribution with a time-
varying mean and standard deviation. For stabilizing selection this
point resides within a blue region, consistent which the intuitive
result that a Gaussian trait distribution evolves towards the lo-
cation of the global maximum of the fitness landscape, and that
the range of trait values decreases over time as more and more
individuals in the population approach this optimum (σ (t) →

0) (Tsimring et al., 1996). Indeed, for stabilizing selection, non-
Gaussian features of the trait distribution barely affect the rate of
the dynamics, consistentwith experimental results suggesting that
traits under stabilizing selection universally attain intermediate
optima (Hoffmann and Merilä, 1999). Additionally, this suggests
that if γ and k were themselves dynamical variables that changed
either due to selection or mating effects, the mean fitness would
nonetheless always reach a finite value dictated by the maximum
of the fitness distribution.

In a disruptive landscape, the intermediate phenotype is disfa-
vored for almost all trait distributions near the classical case of a

Gaussian distribution at γ = 0, k = 3 (red regions in Fig. 3). This
is expected because the maxima of the disruptive landscape occur
away from the intermediate phenotype at z = 0, and so the trait
moves towards these dispersed values in the absence of additional
destabilizing dynamics. However, when the trait distribution is
strongly non-Gaussian, the intermediate phenotype near z = 0
regains stability, an effect that is particularly pronouncedwhen the
trait distribution is strongly asymmetric and flat (large γ , k ≈ γ 2

+

1). High skewness and kurtosis correspond to the trait distribution
containing a relatively large fraction of individuals with extremal
phenotypes, which represent a large enough trait range that the
distance between the two symmetric equilibria in the disrupting
fitness landscape becomes relatively insignificant (the locations of
these off-center equilibria depend on α2/α4 in Eq. (15)). As a result,
the overall average phenotype returns to the center due to the
leading-order effect of the negative α4 term in Eq. (15).

In Supplementary Appendix M, we compare the dynamics pre-
dicted by local stability analysis of Eqs. (12) and (13) with the
dynamics of a population subject to Wright–Fisher dynamics with
starting cumulants matching those used here. We find that the
short-time dynamics of the Wright–Fisher process are directly
analogous to those predicted by the local analysis, particularly
because additional effects (such as variation in the genetic vari-
ance V , and fluctuations in the values of higher cumulants due
to sampling drift) do not manifest over the infinitesimally-short
timescales which local stability analysis applies.

Significant skewness and flatness in the trait distribution can
obscure the effects of disruptive selection and potentially serve as
a mechanism to preserve or enhance phenotypic variance, even
when selection itself acts on the trait variance—potentially impli-
cating higher trait moments in speciation and ecological phenom-
ena that depend on the phenotypic variance (Bolnick et al., 2011).
Although the dynamical equations would become substantially
more complex if the skewness and kurtosis also responded to
selection, results from other cumulant dynamical systems (Rattray
and Shapiro, 2001; Turelli and Barton, 1990) suggest that genetic
or mating processes that preserve a given high order moment
would result in similar ‘‘freezing’’ of the dynamics of lower-order
cumulants. Thus, even if natural selection alters arbitrarily high
moments of the trait distribution, if mutation or mating serve as a
‘‘source’’ that constrains an arbitrary moment of the trait distribu-
tion, then lower-order moments such as the phenotypic variance
would also be prevented from reaching zero in certain regions
of parameter space. This process represents a generalization of
the concept of a "mutation-selection balance’’, a concept typically
invoked in order to justify holding the phenotypic variance fixed
during selection (Smerlak and Youssef, 2017; Neher and Shraiman,
2011; Lande, 1976). However, as with the traditional breeder’s
equation, an additional equation specifically incorporating the un-
derlying genetics would be required in order to justify this process
biologically (Barton and Turelli, 1987).

4.3. Time-variation of the heritability

Experimental studies of phenotypic evolution in artificial selec-
tion regimes generally quantify genetic effects using the narrow
sense heritability, h(t)2 ≡ V/σ (t)2, defined as the ratio of additive
genetic variance V to overall phenotypic variance σ 2. In large pop-
ulations, h2 changes slowly enough that it can be estimated with-
out the need for explicit identification of a trait’s genetic origin.
However, recent experimental results have suggested that h2 may
change appreciably during short periods of strong selection, espe-
cially when the underlying genetics (and thus V ) exhibit complex
dynamics (Lynch and Walsh, 1998). In particular, rapid changes in
the phenotypic variance σ 2 may underlie this phenomenon over
short timescales (Bolnick et al., 2011; Hoffmann andMerilä, 1999),
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Fig. 3. Evolutionary dynamics under stabilizing or disruptive selection. Colored shading represents the maximum eigenvalue associated with the Jacobian matrix of ˙̄z, σ̇ on
a logarithmic scale, evaluated at the equilibrium nearest to z̄ = 0 (the intermediate phenotype) and parametrized by the skewness and kurtosis of the trait distribution (all
other parameters are held constant). Negative maximum eigenvalues (blue regions) represent dynamics that eventually converge to the intermediate phenotype, positive
maximumeigenvalues (red regions) represent dynamics that approach an extremal phenotype, and the intensity of shading indicates the instantaneous rate of the dynamics.
The solid gray line indicates the lowest mathematically-valid value for the kurtosis, k > γ 2

+1. Beneath each figure is a diagram of the fitness landscapeW (z) that produced
it. For this figure, c = 1, V = 1, U = 10 in Eqs. (12) and (13). Shading ranges from eigenvalue values of −2 (dark blue) to 2 (dark red). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

even when an insufficient number of generations have elapsed for
V to change appreciably.

We note that by including changes in higher moments than the
mean, our framework naturally describes changes in the observed
heritability arising from the dynamics of trait variation. In order
to study this effect, we re-parametrize our model in terms of
quantities more readily measured experimentally: our two dy-
namical variables z̄(t) and σ (t) may be replaced by the equivalent
conjugate variables of heritability h2(t) andmean fitnessW (t) (see
Supplementary Appendix F). Because the exact underlying trait
values or distributionsmay not be accessible in certain experimen-
tal contexts, these variables are more descriptive of macroscopic
population trends in population-level assays, such as long-term
bacterial evolution experiments (Good et al., 2017).

In Fig. 4, we show the evolutionary dynamics of the heritability
under a linear directional fitness landscape,

W (z) = α1(z − cz̄), (16)

for which the coupling coefficients are computed in Supplemen-
tary Appendix J. Because any arbitrary, smooth fitness landscape
may be approximated as linear in the neighborhood of the mean
trait, this parametrization illustrates a general relationship be-
tween theheritability andmean fitness dynamics over short timescales.
Setting α1 > 0 results in positive directional selection ( ˙W > 0,
˙̄z > 0) because regions of a fitness landscape with positive slope
tend to drive a population towards a higher mean fitness. The
solutions to Eq. (12), Eq. (13) corresponding to each timepoint are
shown in Fig. 4A, where they are parametrized in terms of the
heritability as a function of mean fitness (which itself increases in
time). In the figure, different traces correspond to various values of
the skewness γ and kurtosis k.

In general, a Gaussian trait distribution (γ = 0, k = 3 in
Eq. (12) and Eq. (13)) always produces the default case of constant
heritability (ḣ2

= 0, gray dashed line in Fig. 4A). An evolving pop-
ulation with positive skewness (blue traces) exhibits heritability
that eventually decreases in time, primarily due to a high fraction
of outlier individuals in the high-fitness tail of the trait distribution.
These individuals produce higher-fitness offspring quickly enough
that the overall trait range increases in time, leading to a corre-
sponding decrease in the overall heritability—which is consistent
with several field studies showing that increasing mean fitness
also increases trait variation and lowers the observed heritabil-
ity (Kruuk et al., 2000; Hoffmann and Merilä, 1999). This growth
of the variance due to tail effects is consistent with prior analytic

solutions for the case of directional selection (Bürger, 1991; Bürger
and Lande, 1994); however,wenote thatwehold the skewness and
higher moments fixed in these calculations. Intriguingly, we find
that high values of kurtosis retard this process at short timescales,
producing some scenarios where the heritability appears to in-
crease transiently, before eventually relaxing non-monotonically
to zero over longer timescales (topmost blue trace). Such non-
monotonicity in the heritability under directional selection would
be an observable experimental signature of non-Gaussian dynam-
ics.

Conversely, a population with negative skewness (red traces
in Fig. 4A) has a long tail of individuals with comparatively low
fitness; these individuals serve to counteract the tendency of di-
rectional selection to increase trait ranges, and thus cause the trait
variation to decrease in time—leading to an accompanying increase
in the trait heritability. Because this effect is driven by the lower-
fitness tail of the distribution, it may partly explain experimental
results that have reported a disproportionately large contribu-
tion of rare phenotypes to the heritability of certain deleterious
traits (Mancuso et al., 2016; Schork et al., 2009). The differential
effect of left and right skewness is further apparent in the trait
distributions at three representative timepoints in the dynamics
shown in Fig. 4B, where the apparent width of the trait distribu-
tion varies non-monotonically and causes continuous changes in
the heritability observed in the upper portion of the figure. This
substantial variation in the distribution’s width at various points
in the dynamics may confound efforts to study experimentally
the evolution of ecological niche width (Bolnick et al., 2010), as
non-Gaussian features in the trait distributionmay cause transient
contraction and expansion of the observed trait range, even in the
absence of competition.

In Supplementary Appendix M, we perform a comparable set
of simulations using Wright–Fisher dynamics, and find general
agreement in the dynamics, including non-monotonicity in the
dynamics at large values of k, as well as a qualitative shift from
h2

→ 1 to h2
→ 0 when γ changes sign from negative to positive.

5. Discussion

We have presented a formulation of phenotypic evolution that
iteratively relates the dynamics of an arbitrary trait distribution
to an arbitrary fitness landscape. This simplified model explains
several phenomena observed in numerical simulations of non-
Gaussian trait distributions evolving in simple fitness landscapes.
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Fig. 4. Time-dependent heritability under directional selection. (A) The heritability
h2 as a function of the mean fitness, which increases continuously over time in a
directional fitness landscape. Colors represent cases in which the trait distribution
skewness is γ = −0.05 (red) or γ = 0.05 (blue). Different traces of the same
color correspond to increasing values of the kurtosis k in the range k = γ 2

+ 1 to
k = γ 2

+ 6, with slower timescales (lower traces) corresponding to larger values
of the kurtosis. The gray dashed line corresponds to evolutionary dynamics with
constant heritability, which the dynamical equations recreate when γ = 0, k = 3.
(B) The trait distributions for three representative timepoints (and thus values ofW )
marked by open circles in (A). For this figure, α = V = 1, U = 0.01, c = 0.5. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

We have shown that skewness or asymmetry in the trait distribu-
tion can delay directional selection or prevent disruptive selection,
and that the heritability – typically assumed to be constant over
short timescales – can vary in time with complex, non-monotonic
dynamics as the mean fitness changes.

Our results are consistent with empirical and theoretical anal-
yses that formulate phenotypic evolution in terms of the prob-
ability distribution of fitness values p(W ) rather than in terms
of an explicit trait distribution p(z) and auxiliary fitness function
W (z) (Good and Desai, 2013). However, the trait-based model
here is more readily applied to arbitrarily complex fitness func-
tions (particularly non-invertible and multimodal fitness land-
scapes) (Neher and Shraiman, 2011), and thusmay assist the study
of explicitly experimental quantities such as selection coefficients
and realized heritability. For fitness distribution models, similar
cumulant dynamical equations have been derived under distinct
constraints and approximations, and for certain types of experi-
ments (e.g., microbiological lineage assays) these formalisms may
be preferable (Smerlak and Youssef, 2017; Neher and Shraiman,
2011; Turelli and Barton, 1990; Good et al., 2017).

Our explicitly phenotypic approach does not involve an explicit
underlying genetic model; we assume a linear heritability relation
and note that this approximation holds over the relatively short
timescales and slow selection regimes observed in our simula-
tions (Bulmer, 1971). Amore detailedmodelwould include explicit
information about the mechanics of inheritance, and how these
mechanics contribute to the breeder’s equation and determine
the parameters it contains. An important starting point for such
work would be models of non-Gaussian evolution based on a
multilocus geneticmodels (Barton andTurelli, 1987; Bürger, 1991),
which have shown that the dynamics of the phenotypic moments

may vary appreciably depending on mating effects, transmission
effects, and whether selection occurs before or after transmis-
sion (Turelli and Barton, 1994).

Other potential improvements include alternative series clo-
sure schemes to raw truncation that depend on the type of fitness
landscape being evaluated, as well as additional cross terms in the
dynamical equations that account for assortative mating effects.
Additionally, we have assumed that the additive genetic variance
remains fixed during the phenotypic dynamics; however over long
timescales natural selection and mating may affect this variance
considerably. Coupling genotypes and phenotypes may also re-
quire the phenotypic portion of the model to be generalized for
multivariate traits by defining a fully time-dependent phenotypic
variance–covariance matrix, which may be particularly important
for selection experiments in which the traits with the strongest
selection responses are unknown a priori (Lande, 1979; Steppan
et al., 2002).

Another limitation of our approach comes from the trunca-
tion approximations necessary to make the dynamical equations
closed-form. Here, we have chosen canonical directional and min-
imal stabilizing/disruptive fitness landscapes, in order to illustrate
the simplest non-trivial dynamics arising from our model and to
justify our inclusion of only the skewness and kurtosis (which
represent the leading-order departures from Gaussian trait distri-
butions). Additionally, we have retained only two of the dynamical
equations in our model: one for the mean trait and one for the
trait variance. But for certain types of initial trait distribution or
fitness landscape, the leading order Eqs. (12) and (13) may not be
sufficiently accurate, and instead the full dynamical equations (7),
(10), and their equivalents for higher cumulants may be necessary.
The number of necessary dynamical equations, and the number
of terms to include in them, depends primarily on the form of
the coupling coefficients Wn. A more detailed fitness landscape,
such as one derived empirically, may require retention of more
terms in the series Wn, because higher-order terms correspond to
finer-scale fitness landscape variationswhich affect dynamics over
smaller length and timescales. However, because computing Wn
only requires projecting a given fitness landscape onto a polyno-
mial basis, this step may be performed numerically.
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