
PH
YS

IC
S

Cryptographic hashing using chaotic hydrodynamics
William Gilpina,1

aDepartment of Applied Physics, Stanford University, Stanford, CA 94305

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved March 26, 2018 (received for review December 15, 2017)

Fluids may store and manipulate information, enabling complex
applications ranging from digital logic gates to algorithmic self-
assembly. While controllable hydrodynamic chaos has previously
been observed in viscous fluids and harnessed for efficient mix-
ing, its application to the manipulation of digital information has
been sparsely investigated. We show that chaotic stirring of a
viscous fluid naturally produces a characteristic signature of the
stirring process in the arrangement of particles in the fluid, and
that this signature directly satisfies the requirements for a cryp-
tographic hash function. This includes strong divergence between
similar stirring protocols’ hashes and avoidance of collisions (iden-
tical hashes from distinct stirs), which are facilitated by noninvert-
ibility and a broad chaotic attractor that samples many points
in the fluid domain. The hashing ability of the chaotic fluidic
map implicates several unexpected mechanisms, including incom-
plete mixing at short time scales that produces a hyperuniform
hash distribution. We investigate the dynamics of hashing using
interparticle winding statistics, and find that hashing starts with
large-scale winding of kinetically disjoint regions of the chaotic
attractor, which gradually gives way to smaller scale braiding of
single-particle trajectories. In addition to providing a physically
motivated approach to implementing and analyzing deterministic
chaotic maps for cryptographic applications, we anticipate that
our approach has applications in microfluidic proof-of-work sys-
tems and characterizing large-scale turbulent flows from sparse
tracer data.
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Recent experimental work has highlighted the ability of fluids
to encode and store information (1, 2), motivating recip-

rocal inquiry into the role of computational rules in shaping
the behavior of fluids in the natural world (3, 4). Such work
has established applications in improving complex microfluidic
devices and for characterizing large-scale complex flows using
sparse data (5, 6), but it has broader implications for under-
standing constraints that shape active matter and self-assembly
schemes (7). At the same time, studying logical operations and
algorithmic performance in physical systems allows analytical
tools borrowed from physics to be applied to traditional digital
information systems, a line of inquiry that traces from Wheeler’s
original “it from bit” conjecture to Landauer’s arguments about
the role of physical representation on information processing
(8, 9).

A potential new avenue for such inquiries is chaos, which
has been widely investigated in digital applications due to the
rich statistical structure it affords deterministic (and thus manip-
ulable) dynamical systems (10). While hydrodynamic systems
have been shown to exhibit chaos—both ubiquitously in turbu-
lent flows (11, 12) but also unexpectedly in viscous flows via
elegant analogies to classical dynamical nonintegrability (13)—
the implications of chaos for digital fluid physics remain mostly
unexplored.

Here, we exploit recent advances in the field of chaotic hydro-
dynamics to show how well-understood properties of chaotic
maps can encode information about the underlying flow dynam-
ics into the relative arrangements of advected particles. We show
that this operation satisfies all of the properties of cryptographic
hash functions that typically appear in digital security applica-
tions, including noninvertible compression of arbitrary inputs to

fixed-length outputs, strong divergence between the hashes of
similar inputs, and resistance to collisions between the hashes of
two distinct inputs (14). We show that these unexpected proper-
ties arise naturally from the time scale-dependent dynamics of
stirring a viscous liquid, implying potential new analysis tech-
niques and applications at the interface of nonlinear dynamics
and cryptography.

Model
Our cryptographic hashing scheme is based on chaotic advection
at low Reynolds number. Given a time-varying flow and a small
set of particles being advected, our hash consists of a short digest
containing the relative ordering of the particles along one dimen-
sion. In order for the hashing scheme to be effective, this digest
must be unique to the specific flow, but the original flow itself
should not be easily computed from the hash—a property that
naturally emerges in chaotic flows.

Under our approach, if the flow being studied has a known,
finite set of governing parameters (such as jet speeds or stir-
ring rates), then the time-dependent flow itself may be denoted
by a discrete sequence of L vectors of parameter values σ,
which we refer to as a “stirring protocol” for the flow. The time
step between parameter changes is arbitrary and may even be
infinitesimal (corresponding to an analog signal); however, we
assume that dissipation is large enough (and thus the Reynolds
number and inertia are small enough) that the stirring protocol
fully and invertibly specifies the dynamics of particles in the flow.
We associate the specific stirring protocol σ with a “message” of
length L that we wish to encrypt.

We then specify M labeled particles at known initial posi-
tions and allow the flow to advect these particles for L time
steps with the step-wise parameters specified by σ. The final
arrangement of these particles is discretized by recording their
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ordering, µ, along the x axis, which is taken as the hash of
the message σ. This last step ensures that the hash µ is non-
invertible, since it discards information about the final coor-
dinates of the particles and thus ensures that knowledge of
the initial conditions and the hash is insufficient to determine
the stirring process, a necessary condition for a hash func-
tion. Our approach thus differs from standard block-cipher
approaches to discrete chaotic encryption in that the original
message is encoded in a time-varying set of map parameters
rather than in the initial conditions of the particles (15, 16).
Instead, our approach generalizes stream ciphers that encode
information in the parameters of a chaotic map (15); however,
the continuous-domain hydrodynamic map allows the message
bandwidth to be made arbitrarily high using an arbitrarily long
stirring sequence. The latter property satisfies the requirement
that a hash function maps arbitrary-length inputs to fixed-length
outputs (14).

Our approach is illustrated in Fig. 1, in which we demonstrate
our hashing scheme using the classical “blinking vortex” flow, a
canonical and early chaotic fluidic map that has been shown both
theoretically and experimentally to demonstrate strong chaos
over a wide range of parameter values (6, 13, 17, 18). This map
consists of a unit circular domain with no-slip boundary condi-
tions, which contains two vortices at positions b =±0.5. At every
fixed time interval T , one vortex shuts off and the other turns on,
causing particles in the domain to trace circular arcs around the
vortex center until another interval T has elapsed. T thus con-
trols the degree of overall chaos in the flow, and when T > 1, the
map is strongly chaotic with an attractor occupying nearly all of
the map’s domain—making the flow a canonical example of mix-
ing in the absence of inertia. We use the strongly chaotic value
T = 1.5 throughout the text, except in a figure below where we
specifically vary T to change the strength of chaos in the system.
The dynamical equations for the map are given explicitly in SI
Appendix, section 1.

The blinking vortex system has several properties that render it
particularly useful for hashing. The two-vortex map has analytic,
circular particle trajectories, which do not require numerical
integration to compute and thus retain numerical precision after
many iterations of the system. Moreover, the two-vortex flow
is isomorphic to the widely studied linked twist map, and so
it exhibits phenomena such as domain-wide streamline cross-
ing that are broadly applicable to many other classes of chaotic
maps (17).

Here, we exploit the fact that the only relevant parameter
describing the map at a given time step is which of the two vor-
tices is currently “on,” which causes the message vector σ to
reduce to a binary encoding of the message information, with
the message σ = 10101010 representing L= 8 iterations of the
classical two-vortex flow in which the vortices always alternate.

We apply each message/stirring protocol to the same set of ini-
tial conditions for all messages; these initial conditions are public
and arbitrary, and throughout this study, we assign the M hash
particles initial positions in the circular domain using a 2D
Fibonacci sunflower spiral, which provides a deterministic, quasi-
uniform initial packing that maximizes the initial interparticle
displacements and thus improves mixing. We contract the radius
of the sunflower by an empirical increment to keep particles away
from the boundary (which inhibits transport). Unlike previous
chaotic hashing protocols (15, 16), these initial conditions are
not secret; in fact, they could in principle be customized by a
rotation angle and then used as a “public key” in an asymmetric
encryption system.

While we use the quasi-uniform sunflower packing for differ-
ent M s throughout this work, we note that a more optimal set
of initial conditions would take into account information about
the specific chaotic map’s dynamics when assigning initial parti-
cle locations, to maximize mixing. For example, the distribution
of principal eigenvalues associated with local stretching of the
flow could be used to weigh initial locations; more generally, the
set of maximal finite-time Lyapunov exponents corresponding to
the message length L could be used to maximize mixing over
that specific time scale (19). Conveniently, the blinking vortex
flow already has a quasi-uniform spatial stretching distribution
for L≈ 10, and so we expect the quasi-uniform packing used
here to be sufficient (SI Appendix, section 9). However, for more
complex empirical mixing systems arising in experimental appli-
cations, preanalysis of mixing regions may be necessary to assign
appropriate initial conditions.

We denote the hash associated with a message σ as µ, which
represents an ordered set of integers corresponding to the final
locations of the stirred hash particles, ranked by their relative
positions along the x axis. For example, for a hash of length
M = 5, five particles are initially labeled based on the relative
x coordinates of their initial positions so that µ0 = 12345. After
L iterations of the chaotic map, particles will have traded relative
positions along the x axis, leading to a final hash µL = 34512. In
cryptography, the size of the hash space determines the difficulty
that an attacker will have computing all possible hashes–a brute
force approach that would allow incorrect information to mas-
querade as correct in an application such as password storage.
Thus, the size of the hash (as measured in bits) provides an upper
bound on the algorithm’s security; for example, the frequently
used digital security function SHA-256 has a hash space of size
2256∼ 1077. Because the hash space in our system grows com-
binatorially (M !) with the number of particles M , in principle
our system achieves comparable security when M = 58 parti-
cles (58!∼ 1078); however, in fluidic implementations, M or L
may be limited by diffusivity, precision loss, or other irreversible
processes (SI Appendix, section 6).

Hash:  1 2 3 4 5

Message:  0 1 0 1 1 0 1 0 1 1 0 1 0 1 1

1 3 2 5 4 3 4 5 1 2

Fig. 1. Message hashing using a chaotic stirring protocol. The hashing procedure is shown at three different time points, including the known initial
conditions and the final configuration and hash. The labeled particles used to compute the hash are indicated with numeric labels; additional points are
underlain in gray to illustrate the chaotic mixing patterns characteristic of the two-vortex “eggbeater” flow.
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Results
Having defined our system, we next seek to characterize how well
it performs in generating uncorrelated hashes µ,µ′ from corre-
lated messages σ,σ′. We define a variation of the permutation
Lyapunov exponent originally proposed by Amigó et al. (16),

λD =

〈
log2

(
d(µ,µ′)

d(σ,σ′)

)〉
σ,σ′

, [1]

where d(., .) represents an appropriate distance function. Here,
we use the edit distance between sets, which counts the minimum
number of reorderings, swaps, or deletions necessary to trans-
form one ordered list of symbols into another. When applied
to binary messages, this corresponds to a generalization of the
Hamming distance that includes insertions and deletions, and
when applied to the hash (an ordered set of distinct symbols),
it corresponds to the minimal permutation distance. Due to the
boundedness of the chaotic domain, in practice the denomina-
tor d(σ,σ′) in Eq. 1 should be kept as small as possible, due
to system-size saturation of the potential interparticle distances
after applying the map.

We generate an ensemble of one million random binary mes-
sages, each with a distinct length L, hash length M , and mixing
period T . For each message σ, a second message is randomly
generated via mutation, insertion, or deletion of a random bit,
to generate a dual message σ′ exactly one edit distance away
from the original [d(σ,σ′) = 1]. The distance between each
pair’s hashes d(µ,µ′) is then computed to generate a parameter-
dependent estimate of the permutation Lyapunov exponent
λ(M ,L,T ).

Fig. 2A shows λD as a function of L and T . In general,
increasing T (and thus the true dynamical Lyapunov exponent
associated with the map) leads to larger values of λD due to
stronger mixing of particles within the chaotic flow. This is con-
sistent with recent results for discrete, pseudochaotic maps that
suggest asymptotic equivalence between the discrete Lyapunov
exponent and true Lyapunov exponent in the limit of high car-
dinality (and thus M ) (20). Surprisingly, however, increasing the
message length L has a nearly identical effect to increasing T ,
suggesting that a more chaotic (albeit computationally demand-
ing) map may compensate for redundant or short messages. For

A B

C

Fig. 2. Chaos spreads hashes. (A) The average permutation Lyapunov expo-
nent λD as a function of the chaotic parameter of the underlying map T
and the message length L. The color map runs between 0 (white) and 8
(black). (B) Mean λD as a function of the hash size M, for message lengths
L running from 10 (light gray) to 100 (black). (C) Mean λD with SE bars for
ensembles of messages with different switching rates. The rightmost edge
corresponds to continuous alternation between the stirrers (10101010...), as
in the standard blinking vortex flow, and the leftmost edge consists of a sin-
gle transition (00...01...11). For this figure, averages were computed from
an ensemble of 106 message pairs. For B and C, T = 1.5; for C, M = 20 and
L = 30.

all conditions tested, λD approaches an asymptotic maximum
value 5.25 comparable to that of traditional cryptographic hash-
ing functions based on bitwise operations (16). That increasing
L and T have similar effects suggests that the primary determi-
nant of the mixing is the total time that the particles are stirred:
Shorter blinking cycles T may be compensated by using more
cycles L. Thus, it is intuitive that the strongest mixing and chaotic
behavior (and thus most effective hashing) occurs when the rel-
ative frequencies of 0 and 1 in the message are equal; otherwise,
long, multicycle runs of a single symbol occur and undermine
chaotic advection—for example, the message 000000... would
generate a flow with no chaotic advection at all. For encoding
specific information into a flow (for example, binary representa-
tions of English characters), achieving equal symbol distribution
is a matter of choosing a highly compressed binary represen-
tation or padding to the message with fixed-length string of
alternating bits.

However, while it is intuitive that the relative symbol ratio
in the stirring protocol (here, the ratio of 1s and 0s) should be
nearly 1, we also observe (Fig. 2C) that more switches between
the symbols generally increase λD : 101010 has a larger λD than
111000. This parameter is an invariant of the information type
being encrypted (21), and it suggests that the distribution of
“runs” of consecutive identical symbols affects the hashing pro-
cess. Overall, we conclude that frequent and uniform switches
between symbols in the message, long messages, and a strongly
chaotic mapping function all lead to less predictable hashing in
which the hashes of two similar messages are unrelated—jointly
endowing our hashing protocol with “preimage” resistance, a
fundamental requirement for cryptography (14).

While the final projection of the coordinates onto the x axis
ensures that the deterministic hashing procedure is noninvert-
ible, a stirring-based hashing scheme may be subject to a second
preimage or “birthday” attack, wherein two random inputs pro-
duce the same hash, resulting in a “collision” that renders the
original inputs indistinguishable. To investigate the frequency of
hash collisions under various conditions, we compute an ensem-
ble of messages and determine how M and L affect the collision
density φM , defined as

φM ≡ 1− Nu

Ns
, [2]

where Nu is the number of unique hashes found, and Ns is the
total number searched. Because an M particle hash has M ! pos-
sible values, we expect a transition between most hashes being
unique (φM ∼ 0) and most hashes being duplicates (φM ∼ 1) to
occur when Ns ≈M !. Fig. 3A shows φM for several different
values of M and L (black lines), illustrating a sharp sigmoidal
transition that occurs at Ns ∼M ! across many values of L.
However, at small L, the map undergoes too few iterations to
satisfactorily sample the chaotic attractor, leading to a lower
bound on φ that decreases to zero as L grows.

In addition to avoiding collisions, a strong cryptographic hash-
ing scheme distributes hashes uniformly across the space of
possible values. If distributions of collision locations are not
uniform, then neighboring hashes are correlated and a single
collision will compromise many messages. We assess hash uni-
formity by generating Ns and then tabulating the total number
of identical pairs, triples, etc. present in the sample. We then
order the Ns hashes by their rarity and compute a running
sum of the total number of unique hashes contained within a
given n <Ns of the observed hashes. The resulting hash cover-
age plots are shown in Fig. 3B for various values of M and Ns .
For small numbers of computed hashes, the fraction of unique
hashes grows linearly with the sample size because Nu =Ns , and
the duration of the linear growth increases with M . However,
as more hashes are sampled, duplicates begin to appear, causing

Gilpin PNAS Latest Articles | 3 of 6



A B

Fig. 3. Collision probability and uniformity of hash values. (A) Mean hash
collision density φM as the hash size M is varied, for message lengths
L = 2, 4, 6, ..., 20 (black traces). Traces from top to bottom correspond to
the smallest to largest message lengths, and the topmost curves for L = 2
and L = 4 overlap. The hash space is rescaled by the number of hashes sam-
pled, Ns, and the analytic solution for φM under uniform random sampling
is underlain (blue dashed trace). (B) Cumulative fraction of new hashes
found as a function of total hashes computed, normalized by total possi-
ble unique hashes (M!) (black traces), for several different message lengths
(L = 5, 10, 25, annotated). Underlain on each subplot is the analytic result for
random sampling (blue dashed trace). All subpanels contain a fixed number
of samples Ns = 2000, leading to a linear trend in the lowest subpanel where
Ns�M!.

sublinear growth and gradual saturation of the fraction of unique
hashes observed.

We compare these curves to our expectation for a “perfect”
hash function, which we assume would uniformly randomly sam-
ple (with replacement) the M ! elements of hash space when
given random messages as inputs. In this case, whether a given
hash is new or a previously observed value is given by a binomial
process. If Ns hashes are randomly sampled (with replacement)
from this set, then the probability of drawing exactly U unique
hashes is given by

PU =
M !!

M !Ns (M !−U )!

(
1

U

U∑
q=0

(−1)U−q

(
U
q

)
qNs

)
, [3]

where the parenthetical term is the explicit formula for the Stir-
ling number of the second kind S(Ns ,U ), which is a summation
over the number of singly drawn hashes (q = 1), pairs (q = 2),
etc. for a binomial (uncorrelated) hash selection process. The
cumulative distribution over these pairs,

∑
U PU , is underlain as

dashed lines in Fig. 3B, and it is apparent that, at large message
lengths L and hash sizes M , the chaotic hash function approaches
this upper bound in performance. Calculation of the expecta-
tion value of Eq. 3,

∑
U UPU , produces the expected number

of unique hashes Nu from a uniform sample of size Ns from M !
possible hashes,

Nu =M !

(
1−

(
1− 1

M !

)Ns
)
. [4]

Inserting this equation into Eq. 2 provides a null estimate of
the collision density, underlain as a dashed line in Fig. 3A. As
expected, this function is strongly sigmoidal, predicting a sharp
transition from φ= 1 to φ= 0 as Ns ∼M !.

The analytic estimates provided by Eqs. 3 and 4 illustrate a
surprising property of chaotic hashing: for small M and L, the
hash function initially encounters fewer collisions than would be
expected if it uniformly sampled the hash space. This effect is
apparent as the concave transients above the blue trace in Fig.
3B. This anomalous scaling is consistent with hyperuniformity
(22), a phenomenon in fluids and granular media in which long-
wavelength density fluctuations are suppressed (22–24). In our

system, its occurrence at small M and L implies a dynamical
transient wherein the particles retain information of their ini-
tial conditions: The particles have an initial separation∼ 1/

√
M ,

which typically takes a certain number of time steps L to tra-
verse. As a result, the time scale of hyperuniformity depends on
the particular value of M ; at very small M in Fig. 3, the sampling
of new hashes is also bounded from below due to a secondary
time scale in which particles travel too little to ever exchange
ordering, leading to a plateau in the number of distinct hashes
found. Hyperuniformity thus occurs at intermediate L when par-
ticles travel for enough steps to exchange positions but not to
fully explore the chaotic attractor.

This apparent oversampling of new hashes at relatively
short message lengths introduces a tradeoff: Hyperuniformity
improves the hash function’s tolerance to random collisions, but
it undermines the hash function’s cryptographic security because
an attacker intending to infer a message’s hash from that of a sim-
ilar message could exploit the finite set of locations sampled by a
given particle over small L. Thus, for general process validation
applications, hyperuniformity at small L and M may be desirable;
however, applications with strongly correlated messages would
require cryptographic hash security. These limits represent a
form of tradeoff between fault tolerance (random collisions)
and attack tolerance (collisions informed by prior information
about the dynamics), a dichotomy previously observed in random
networks (25).

We next investigate the origin of this hyperuniform transient,
which we suspect arises from short-time mixing dynamics due to
stretching associated with subregions in the fluid’s chaotic attrac-
tor that kinetically isolates distinct hash particles. To identify the
signature of these dynamics, we study the short time pairwise
winding statistics of particle trajectories, which recent work on
topological chaos and braiding has shown to represent a char-
acteristic invariant of the dynamical system (6, 26). Using the
notation of Caussin and Bartolo (27), we define the pairwise link-
ing number wi j (L) as the total amount that two particles rotate
around each other during L iterations of the map,

wi j (L) =
1

2

L∑
a

εija .

Here, a indexes all cases in which particles exchange rela-
tive positions along the x axis. εija =−1 if particle i crosses
above particle j during the ath intersection; conversely, εija = 1 if
particle j is above i . The total winding across an M particle
hash is given by W (L) =

∑
(i,j) wi j (L), and it may be taken as

characteristic global property of the mixing process that pro-
duced the hash: Linear growth of W (L) (continuous winding)
may be induced by static vortices, whereas sublinear growth
is indicative of dynamical effects like random winding and
unwinding of particles’ worldlines (27, 28).

Fig. 4A shows the root-mean-square of the total winding√
〈W (L)2〉 for several different values of M , with the aver-

age taken over an ensemble of 106 random messages. The total
winding shows a clear transition from ballistic [W (L)∼L] to
diffusive [W (L)∼L1/2] scaling at L≈ 10, with the transition
point only weakly varying with M (see Fig. 4A, Inset). This sug-
gests that, over short times, mixing in braid space is governed
primarily by convergent behavior of hash particles with nearby
initial conditions, which explore the chaotic attractor locally
but have insufficient time to wander the full domain. These
transient dynamical barriers partition the chaotic attractor into
subsets of trajectories, which wind together as clusters over short
time scales that gradually shrink as particles have more time
to explore the attractor and intercalate their worldlines’ wind-
ings. This transition is illustrated in Fig. 4C, which shows for a
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Fig. 4. Short-time particle braiding disperses trajectories across hash space. (A) The root-mean-square winding index,
√
〈W(L)2〉, over time for different

hash lengths M (traces from topmost to bottommost correspond to M = 10, 20, 40, 80). Inset shows the relative slope, as measured by the normalized
differences (

√
〈W(L + 1)2〉−

√
〈W(L)2〉)/

√
〈W(1)2〉. (B) The mean rearrangement index as a function of the same values of M and L given in the first panel.

(C) For two hash particles (initial locations marked by black dots), the relative frequencies that each one visits different points in the domain over short
(Left) and long (Right) time scales. White regions are visited equally by both points. (D) The distribution of message-averaged pairwise linking numbers,
p(w̄ij(L)), across all particle pairs, at the same short and long time scales as C.

single pair of hash points the relative density of their future posi-
tions in the domain over short and long time scales (Fig. 4C,
Left and Right, respectively). Red (blue) regions correspond to
those occupied by potential trajectories originating from the left
(right) hash point, and white regions correspond to regions that
trajectories for both particles explore to equal degrees (see SI
Appendix, section 3 for more detail). Clustering indicates that
over short time scales the initial positions strongly determine
the regions of the attractor explored by a given hash particles,
but over longer time scales, both particles sample domain rel-
atively equally. Over short time scales, the large-scale winding
of these clusters of kinetically accessible positions dominates
the total winding, apparent as a strongly bimodal distribution
of ensemble-averaged linking numbers across all possible par-
ticle pairs p(w̄ij (L)) (Fig. 4D, Left). Once the two point clouds
fully intercalate, the average linking distribution becomes Gaus-
sian (Fig. 4D, Right) and further growth in total winding becomes
diffusive. For both time scales, the mean linkage is less than
zero: because both vortices have positive rotation direction, par-
ticles over time tend to travel anticlockwise around the domain,
inducing a global net twisting of particle worldlines that produces
positive mean winding (27).

Analysis of the hashing process confirms the role that chaos
plays in hyperuniformly randomizing the hash over short time
scales: In early steps of hashing, large-scale transpositions of
groups of neighboring particles within the hash (e.g., µ0 =
12345678→µ1 = 56781234) tend to occur much more fre-

quently than would be expected for random rearrangements.
This may be quantified by defining a “rearrangement index”
R(L) that quantifies how many initially nearest neighbors cease
to be neighbors under L iterations of the map (see SI Appendix,
section 4 for details). For all tested values of M , the root-
mean-square growth of R(L) shows similar dynamics to the
winding, with an initial transient period lasting ∼ 10 iterations
in which nearest neighbors stay together (Fig. 4B). The two
regimes of mixing and their effect on the hash function are
thus analogous to initially cutting a deck of playing cards sev-
eral times and then gradually riffling the halves of the deck back
together.

Discussion
In this article, we have presented a physically motivated chaotic
cryptography system implemented using a widely studied, canon-
ical hydrodynamical system. The two-vortex map we study explic-
itly describes fluid flow at low Reynolds number, allowing inter-
pretation of the properties of the hash function in terms of
familiar Lagrangian concepts from dynamical systems such as
braiding, particle dispersion, and mixing. Our work suggests a
role for tools from dynamical systems theory in constructing
and characterizing cryptographic functions as well as potential
utility for cryptographic concepts (e.g., collision tolerance and
attack resistance) in understanding hydrodynamical systems. The
design of modern digital hash functions for computer security is
an active area of research (29, 30), and by demonstrating a simple
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model in which hashing arises from mathematically characteriz-
able chaos, we anticipate our work could inform future efforts to
design nonheuristic hash functions from first principles based in
dynamical systems theory (15, 16).

However, we anticipate that the most direct application of
our work arises in microfluidics and mixing theory, particu-
larly in process verification for particle self-assembly (7, 27) and
microfluidic proof-of-work systems (31). Such microscale appli-
cations raise the question of whether, in practice, chaos-based
hashes are too fragile to external perturbations or irreversible
interactions to guarantee repeatability (32). In SI Appendix, sec-
tion 6, we perform extensive characterization of how our hashing
scheme’s reproducibility is affected by random noise—either
arising from numerical precision loss in digital implementations
or from diffusion of particles across streamlines in a physical
system. We parametrize the relative strength of noise using the
dimensionless Péclet number Pe, which specifies the relative
strength of advection relative to diffusive noise in the system:
A higher Pe corresponds to larger-scale or faster-stirred physi-
cal systems, or computational settings with low error rates per
operation. We find general repeatability when Pe∼ 105, which is
comparable to the parameter ranges for contemporary microflu-
idic mixing systems (33, 34). Reversibility against diffusion has
previously been tested for some microfluidic mixing geometries
(35), and in our simulations, we find that it primarily breaks down
at very large message or hash lengths, thus creating a practi-
cal constraint on message size. However, higher Péclet numbers
(and thus repeatability) could be achieved in microscale systems
coupled to external forces, such as magneto- and electrofluidic
mixers (1, 34, 36). Additionally, we have performed similar anal-
yses to quantify separately potential limitations due to inertial

effects and particle collisions, and we find that experimentally
realistic values Re∼ 10−3 and tracer particle size d < 10µm
would allow consistent hashing within the two-vortex system (SI
Appendix, sections 7 and 8).

Such constraints would not impede application of our hash-
ing system to other, larger-scale problems in mixing theory,
such as the identification and classification of coherent struc-
tures in complex flows using topological metrics (6, 37). Such
efforts are often motivated by the characterization of large-scale
ocean flows from sparse buoy data (38), but they have found
diverse uses ranging from the biomechanics of swimming to jet
dynamics (19, 39). Our work suggests that complex flows with
chaotic dynamics may leave distinguishable signatures in their
arrangement of advected particles, suggesting future uses for
hash distributions in characterizing arbitrary flows from tracer
trajectories.

Materials and Methods
All simulations were carried out using the Mathematica software package
(Version 11.0.1.0; Wolfram Research, Inc.). When possible, all map param-
eters (such as the domain radius and stirrer coordinates) were expressed
using fractional representations (i.e., T = 3/2 instead of T = 1.5; b = 1/2
instead of b = 0.5) to allow the program to retain numerical precision under
repeated iterations of the map. Quantities requiring explicit decimal repre-
sentations, such as the locations of advected particles under the map, we
set to a precision limit of 100 places after the decimal, which was found to
be sufficient for this system. Precision retention is further characterized in SI
Appendix, section 5.
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