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Desynchronization of jammed oscillators by avalanches
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Synchrony is inevitable in many oscillating systems—from the canonical alignment of two ticking grandfather
clocks, to the mutual entrainment of beating flagella or spiking neurons. Yet both biological and man-made
systems provide striking examples of spontaneous desynchronization, such as failure cascades in alternating
current power grids or neuronal avalanches in the mammalian brain. Here, we generalize classical models of
synchronization among heterogenous oscillators to include short-range phase repulsion among individuals, a
property that allows the emergence of a stable desynchronized state. Surprisingly, we find that our model exhibits
self-organized avalanches at intermediate values of the repulsion strength, and that these avalanches have similar
statistical properties to cascades seen in real-world systems such as neuronal avalanches. We find that these
avalanches arise due to a critical mechanism based on competition between mean-field recruitment and local
displacement, a property that we replicate in a classical cellular automaton model of traffic jams. We exactly
solve our system in the many-oscillator limit, and we obtain analytical results relating the onset of avalanches or
partial synchrony to the relative heterogeneity of the oscillators and their degree of mutual repulsion. Our results
provide a minimal analytically tractable example of complex dynamics in a driven critical system.
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I. INTRODUCTION

Spontaneous synchronization occurs in diverse systems
such as robotic swarms, power grids, neuronal ensembles, and
even social networks [1–5]. Globally coupled phase oscilla-
tors represent a basic, tractable paradigm for understanding
synchronization, formulating the phenomenon as the grad-
ual mutual entrainment of individual oscillators due to the
compounded effect of continuous weak interactions [4]. This
paradigm stems from pioneering midcentury work by Winfree
[6] and Kuramoto [7], who established the universality of
minimal phase oscillator models for understanding synchro-
nization in a wide variety of biological processes. Subsequent
work has established general results for the onset of synchro-
nization in phase oscillators, and results from these simple,
tractable models have been successfully applied to the study
of biological systems spanning from brain waves, to bacte-
rial signaling, to swimming microorganisms [8–12]. However,
while the theory of phase oscillators is well established, in
recent years a variety of novel physical phenomena have been
discovered in variants of phase oscillator models [13–16],
including chimera states [17,18], glasslike relaxation medi-
ated by a “volcano” transition [19], and oscillation death via
broken rotational symmetry [20]. These results underscore
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that even simple abstractions of real-world oscillators can
display surprisingly complex dynamics.

Many such discoveries are framed in terms of their effects
on the synchronous state, which represents a globally stable
solution of the underlying dynamical equations. However,
many real-world oscillator populations, such as neuronal en-
sembles, exhibit a maximally desynchronous state, in which
the phases of individual oscillators become evenly spaced
apart on the unit circle [21,22]. Such dynamics are achievable,
in principle, by introducing negative couplings into stan-
dard phase oscillator models [23,24]; alternative approaches
include introducing phase offsets or time delays in the in-
teractions among oscillators, or introducing specific pairwise
couplings among oscillators that embed them on a complex
graph [3,25,26]. The tunability of synchronization in these
models introduces the broader question of whether unique
phenomena can occur at the critical intermediate point be-
tween the synchronous and maximally desynchronous states.

Here, we investigate this regime by introducing a minimal,
tractable generalization of classical oscillator models, which
allows a smooth transition between full synchrony and max-
imal desynchrony. Our model is based on short-range steric
interactions observed in swarms and active matter, and it bears
resemblance to local inhibitory effects observed in real-world
ensembles of interacting neurons. Our model exhibits a sur-
prising phenomenon consisting of self-organized avalanches,
in which the system seemingly approaches synchrony, only
to abruptly desynchronize at quasirandom intervals. De-
spite appearing in a minimal phase model, these avalanches
have similar statistical properties and scaling exponents to
avalanches observed in real-world oscillator networks, includ-
ing neuronal ensembles, financial markets, and power grids
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[27–29]. We trace these avalanches to a critical mechanism
driven by competition between large-scale attraction of oscil-
lators to the mean field and small-scale rearrangements, which
we recreate using a cellular automaton model inspired by
self-organized criticality in traffic. Finally, we solve our model
exactly in the many-oscillator limit and show that avalanches
in the system originate in the amplification of noiselike exci-
tations provided by local rearrangements.

II. APPROACH: THE KURAMOTO MODEL WITH
SHORT-RANGE REPULSION

Our model consists of nonidentical phase oscillators with
global attraction through sinusoidal coupling; we modify this
model by adding an additional term corresponding to short-
range repulsion among oscillators with proximal phases,

θ̇ j = ω j + 1

N

N∑
k=1

(
K sin(θk − θ j ) − d

dθ j
V (d (θ j, θk ))

)
, (1)

where the interaction V (·) represents a short-range repulsion
with amplitude V0 ≡ V (0) and width 2π/N ; the width scales
inversely with N in order to ensure short-ranged interactions.
The angular distance function d (θ j, θk ) corresponds to the
signed shortest distance between two angles along the unit cir-
cle. The individual oscillator frequencies ω j are sampled from
a probability distribution g(ω j ); following previous work, we
use a Cauchy distribution with mean frequency ω̄ and width
σω. Below we obtain comparable results for several choices
of V (·).

When V0 = 0, Eq. (1) becomes the standard Kuramoto
model with global coupling and no phase offsets; this model
exhibits solvable dynamics and synchronization when K is
large relative to σω [4,30]. The onset of synchronization can
be readily observed via the dynamics of the Kuramoto order
parameter,

R(t )ei�(t ) ≡
N∑

k=1

eiθk (t ),

which reaches a stable steady-state R = 1 when K > 0, σω =
0. However, in the case of nonzero repulsion V0 > 0, Eq. (1)
admits another stable solution when K = 0 and σω is small,
corresponding to equal spacing of oscillators along the unit
circle (R = 0) due to steric interaction. Thus the relative
values of K and V0 parametrize competition between global
attraction to the mean field and local avoidance of clustering.

The repulsive interaction can be seen as an abstraction
of steric interactions among individuals [31], as occurs in
swarms of self-propelled oscillators [5,32]. Similar repulsive
interactions occur in levitating colloidal particles, which pro-
duce collective dynamics reminiscent of those reported here
[33]. Alternatively, in neurons, the repulsion term would cor-
respond to a negative region in each neuron’s phase-response
curve; such a response could arise due to synaptic depression
via local depletion of neurotransmitter reserves [34,35].

We contrast our approach with previous studies that gen-
eralize the Kuramoto model by introducing spatial effects
through a nontrivial coupling matrix K → Ki j . These studies
include mixtures of purely excitatory and inhibitory inter-
actions [19,24,36], as well as complex spatial interaction

kernels [37] or multiplexed interactions [38,39]—which can
give rise to complex dynamics such as global desynchro-
nization, local “ripple” states, and even chimera states. In
contrast, our approach introduces short-range repulsion in
each oscillator’s phase-response curve, making it a particu-
lar realization of Kuramoto-Daido models, which extend the
Kuramoto model to include generalized phase coupling in-
teractions [40]. Recent works have explored the inclusion of
higher-order harmonics, producing chaotic fluctuations in the
order parameter [13,41,42] and quasiperiodicity [43]. Here,
we show that our choice of short-range repulsion produces
particlelike interactions in the phase domain, such as finite-
size effects, criticality, and jamming.

III. RESULTS

A. Avalanche dynamics appear at intermediate
coupling strengths

Unexpectedly, at intermediate values of K and V0, the
order parameter undergoes irregular oscillations, display-
ing epochs of rapid synchronization punctuated by gradual
desynchronization events (Fig. 1). These fluctuations occur
independently of the choice of repulsive kernel V (·); we
show results for Gaussian, Cauchy, and triangular potentials in
Fig. 2, although we otherwise focus on Gaussian repulsion for
simplicity. Moreover, fluctuations persist over a range of re-
pulsion radii, potential strengths, and ensemble sizes (see Ap-
pendix A). Qualitatively, oscillations of the order parameter
(and frequency fluctuations of individual oscillators) resem-
ble those of relaxation oscillators; intuitively, the repulsive
term in Eq. (1) introduces a second timescale into the col-
lective dynamics (the first being the synchronization rate). In
relaxation oscillators, timescale separation between fast and
slow manifolds produces complex dynamics; a similar effect
occurs in integrate-and-fire neuron models. In our model, the
second timescale arises directly from interaction with other
oscillators.

These irregular oscillations are particularly striking given
the global coupling among units. Self-organized quasiperi-
odicity has previously been reported in the phases of
individual phase oscillators with nonlinear coupling [44]; in
this system, when the coupling K is too low to produce
full synchrony, the mean field fails to entrain individual
oscillators—however, R(t ) remains periodic. The behavior
of Eq. (1) also differs from partial synchronization ob-
served in chimera states, in which distinct synchronous and
desynchronous subpopulations coexist within an ensemble
of oscillators [3,13,17,18,45,46]. While chimera states can
produce irregular oscillations of R(t ), the form and character
of chimera states often arise specifically from the presence
of mixed short- and long-ranged pairwise couplings. In con-
trast, the number of short-range interactions experienced by
an oscillator subject to Eq. (1) varies continuously as other
oscillators enter and exit its effective repulsive radius.

B. Characterizing the critical mechanism

We hypothesize that our observed cascades arise from a
critical mechanism, due to (1) the universal long-term statis-
tics of our system, which are invariant to the choice of
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FIG. 1. Transient synchronization and desynchronization in a jammed oscillator ensemble. (a) A population of N = 60 oscillators with
short-range Gaussian repulsion, visualized in a frame rotating with the mean field. (b) The Kuramoto order parameter R; (c) the instantaneous
values of individual frequencies; and (d) the mean frequency deviation from the population mean. For this figure and others (except where
noted), K = 0.4, V0 = 0.8, σω = 0.2.

interaction kernel; (2) the occurrence of cascades at inter-
mediate regimes between fully dispersed and fully localized
states; and (3) the lack of bistability in Eq. (1). We ob-
serve that each value of the order parameter R(t ) provides
an upper bound for a range of possible values of the mean

frequency �(t ) [Fig. 2(d)], implying that cascades occur
across a range of scales. Lending quantitative support to this
hypothesis, we find that the power spectrum of the order
parameter R(t ) exhibits 1/ f α decay, with α = 1.5 ± 0.08
[Fig. 2(c)]; additionally, the higher-order order parameters

FIG. 2. Universal statistical properties of avalanches across different repulsive potentials. (a) Example dynamics of the order parameter R
for short-range repulsion given by Gaussian (blue), Cauchy (turquoise), and triangle (yellow) potentials (inset shapes). (b) R vs the deviation
between the mean field and the mean intrinsic frequency of the oscillators. (c) The power spectral density, with slopes corresponding to
power-law decay exponents (inset). (d) A Hurst plot of the rescaled range vs measurement timescale, a measure of fractality for time series,
with slopes corresponding to Hurst exponents (inset). (e) Avalanche duration vs size, annotated by Spearman correlation. All error ranges
comprise bootstrapped standard deviations.
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Rn ≡ ∑N
j=1 einθ j (t ), n > 1, exhibit more gradual decay at low

frequencies, indicating stronger temporal correlations in the
clustering of oscillators over long timescales. Similar scaling
exponents occur in several systems with self-organized crit-
icality, including sandpile models, granular relaxation, and
experimental measurements of “stick-slip” friction [47–50].
Further evidence of criticality comes from the scaled range
versus time interval, which shows a straight-line trend indica-
tive of self-similarity over five orders of magnitude [Fig. 2(d)].
The slope corresponds to a Hurst exponent H = 0.91 ±
0.01 ≈ 1, indicating long-time correlations consistent with
criticality [51]; moreover, experimental work has observed
that H ≈ 1 may indicate criticality even in finite systems [52].
Consistent with a critical mechanism, we find strong positive
correlation (0.92 ± 0.02, 954 events) between the size of indi-
vidual drops in R (peak-to-trough amplitude) and the duration
of each event (peak-to-peak distance)—a sign of a critical
relaxation mechanism driving desynchronization [Fig. 2(e)]
[47,48,53].

We do not rule out whether avalanches are transient
within our system, although we note that transience would
not preclude criticality, because nonconservative systems can
be transiently critical. For example, semidisordered chimera
states originally observed in discrete oscillator ensembles
were later found to be transient, but very long-lived [3,54,55].
However, we note that when σω = 0, the avalanches are neces-
sarily transient because Eq. (1) can be written as the gradient
of a potential [56]; however, we observe in practice that fluc-
tuations rarely cease when N > 20 or σω > 0.01, introducing
the possibility that our phenomenon is either stable or a “su-
pertransient” that scales sharply with system size [54]. In any
case, the persistence of avalanches, and the wide range of
parameter values over which they occur, suggest that our ob-
served dynamics are an important phenomenon for systems of
the form of Eq. (1)—especially real-world systems with noise
or other driving that could continuously retrigger cascades.

Having observed long-term statistical properties consistent
with self-organized criticality, we next consider the micro-
scopic mechanism of criticality in our system. Close inspec-
tion of individual oscillators during a single synchronization-
desynchronization cycle reveals that rearrangements drive the
onset of avalanches [Fig. 3(a)]. Intuitively, attraction of oscil-
lators towards the mean field causes an exponential increase
in local density in θ space. This clustering increases the steric
pressure on synchronized oscillators, increasing the proba-
bility that two oscillators will overlap sufficiently to either
exchange positions or exert a joint force on a third oscillator—
thereby triggering a cascade of oscillator rearrangements and
transient desynchronization. We quantify this effect by com-
puting the net repulsive force acting on oscillator j, due to the
cumulative effect of other oscillators falling within its radius
of interaction,

F j = −
N∑

k=1

d

dθ j
V (θ j, θk ),

which is proportional to the gradient of the local density
of oscillators: An oscillator with an equal number of neigh-

FIG. 3. Microscale oscillator rearrangements trigger avalanches.
(a) Positions of oscillators during a typical synchronization-
desynchronization cycle. (b) The order parameter R (left axis) and
the fraction of rearrangements per time step (right axis). (c) The
oscillator positions colored by net repulsive force F .

bors falling on its right and left sides experiences zero net
force. Figure 3(c) shows F j overlaid as coloration of the
traces in Fig. 3(a). As an oscillator j exchanges positions, the
sign of F j fluctuates, giving rise to short-timescale dynamics
necessary for criticality. Additionally, the magnitude of |F j |
increases during periods in which the order parameter is large,
underscoring the role of local force buildup in producing
avalanches. In order to further quantify changes in the relative
ordering of oscillators during an avalanche, in Fig. 3(b) we
compute the “rearrangement fraction,” the fraction of oscilla-
tors that exchange positions at each time point. We determine
this quantity by calculating the normalized Kendall tau dis-
tance between cyclic orderings of the oscillators along the unit
circle at each pair of successive time points. During a single
time step, if all oscillators exchange and permute positions
along the unit circle due to rearrangements, the rearrangement
fraction will be 1; if no oscillators exchange positions, then
this quantity will be 0.

We observe that, during synchronization, brief peaks in the
net force appear and then relax, due to oscillators having suffi-
cient space to rearrange and maximize their spacing. However,
as the degree of synchronization increases, oscillators become
less likely to have space to freely rearrange, causing repulsive
forces to aggregate within the cluster. Eventually, large-scale
rearrangement occurs, triggering a cascade of rearrangements
that break apart the cluster—visible as a sustained period of
nonzero net repulsive force, position exchanges, and disper-
sion along the unit circle.
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C. A cellular automaton traffic model recreates the dynamics

Given our observation that criticality arises due to com-
peting aggregative and dispersive processes occurring over
widely separated timescales, we seek to recapitulate our find-
ings in a minimal model that rules out potential alternative
mechanisms [57]. The attraction of oscillators towards the
mean field qualitatively resembles directed flow in classical
traffic models, with steric interactions among oscillators seed-
ing “jams” due to excluded volume effects. We start with the
Nagel-Schreckenberg cellular automaton model for traffic on
a periodic domain [58]. In this model, N cars are distributed
among M sites, represented by a length M string with site val-
ues 0 (unoccupied) or 1 (occupied, without overlaps). In each
time step, cars at each occupied site move forward a number
of units determined by their current velocity and then update
their velocity using various acceleration rules (such as random
acceleration or braking). A central feature of the model is that
a car’s velocity is bounded by the number of empty sites pre-
ceding it, thus preventing passing—a constraint that triggers
the formation of large-scale jams at high densities N/M → 1,
and which allows the system to exhibit self-organized critical-
ity when the density is sufficient for jams to transiently form
and then break apart [59]. Here, we modify this model in two
ways: (1) We impose an acceleration rule that depends, in part,
on the distance of each car from all other cars, and (2) if the
net repulsive force on a given car reaches a critical threshold,
then the car accelerates at a rate depending on the magnitude
and direction of its net force. The latter rule comprises a
one-dimensional toppling mechanism for large jams, as occur
in classical sandpile models of self-organized criticality [47].
We describe the model in greater detail in Appendix E.

We observe that our modified traffic cellular automaton
replicates the irregular buildup and breakup of synchronized
states that we observe in the continuous-time oscillator dy-
namics (Fig. 4). Moreover, the statistical properties of the
two models are comparable: The power spectral density of
R (calculated by assuming the cars travel on the unit circle)
displays α = 1.48 ± 0.01, while the raw time series exhibits
H = 0.93 ± 0.01. The similarity between the oscillator and
traffic models underscores the central role of force buildup
and rearrangement in determining our observed avalanche
dynamics, despite qualitative differences between the two
models.

D. A continuum model maps the critical regime

That rearrangements trigger cascades indicates the role
of interoscillator repulsion in amplifying local events into
global cascades. Avalanches therefore are the result of Eq. (1)
becoming extremely sensitive to noise (here provided by rear-
rangements) at intermediate values of V0/K . In order to better
understand this critical mechanism, we next seek to solve the
repulsive oscillator model analytically in the continuum (large
N) limit. In this limit, the system comprises an “oscillator
fluid” with the dynamical equation

∂t f + ∂θ (v f ) = 0, (2)

where f (θ, ω, t ) is the probability density of oscillators at
position θ along the unit circle. The force is given by a

continuum analog of Eq. (1),

v = ω + K
∫∫

f sin(θ ′ − θ )dθ ′dω − (1/N )[V0 + ξ (t )] ∂θ f .

(3)
The first two terms in this expression follow directly from
the Kuramoto model [60]. The remaining term proportional to
∂θ f follows from the continuum limit of the repulsive interac-
tion (see Appendix B for derivation). Similar density gradient
terms appear in continuum versions of critical sandpile mod-
els [61]; here, the term helps stabilize the uniform distribution
f = 1/(2π ), R = 0. We introduce a heuristic noise force
ξ (t ) that triggers cascades; we assume that rearrangements
are seeded by uncorrelated stochastic events 〈ξ (t )ξ (t ′)〉 =
ξ0δ(t − t ′), with amplitude proportional to the local oscilla-
tor density. We assume the simple case of ξ (t ) global and
uncorrelated, in order to demonstrate that avalanches are not
particularly sensitive to details of the noise—however, a more
explicit heuristic model of local rearrangements may provide
greater similarity to the discrete simulations. Our continuum
analysis presented below shows that the simplest way that
noise can affect the dynamics of R(t ) is through a term of the
form ξ (t )∂θ f , as appears in Eq. (3); other approaches, such as
additive or multiplicative noise, do not affect the dynamics of
R(t ) (see Appendix C).

In order to solve for the dynamics of R(t ) subject to Eq. (2),
we impose a form for f (θ ) using the Ott-Antonsen ansatz
[60,62], which assumes a Fourier representation of the density
distribution,

f (θ ) = g(ω)

2π

(
1 +

∞∑
n=1

aneinθ + c.c.

)
.

We insert this equation in Eq. (2), and we assume that g(ω)
is given by a Cauchy distribution of width σω. The resulting
dynamical equation reveals that the full dynamics are captured
by those of the order parameter,

Ṙ(t )

R(t )
= − σω − K

2
[R(t )2 − 1] − P(R(t ))

2πN
[V0 + ξ (t )],

P(R(t )) ≡ 1 + R(t )2 + R(t )4 + R(t )6 + R(t )8, (4)

where R(t )ei�(t ) ≡ ∫
eiθ ′

f (θ ′)dθ ′. In the zero-noise limit (ξ =
0), Eq. (5) admits two physically meaningful solutions,

R = 0, R ≈
√

2

4

√√√√√
u2 + 16(u − 1) − 16

(
2πσω

V0

)
− u,

(5)
where u ≡ πK/V0. The approximate nonzero solution closely
matches the exact solution expressed in terms of the root of
the high-degree polynomial P(R) (see Appendix C). Analysis
of the eigenvalues associated with these solutions reveals that
they exchange stability via a transcritical bifurcation at V0 =
πN (K − 2σω ). Discrete oscillator simulations across various
σω and V0/K show general agreement with Eq. (5) below this
critical value (Fig. 5); in this regime the dynamics converge
to a partially synchronized state. However, as V0 → πN (K −
2σω ), the dynamics of the discrete simulations undergo an
abrupt transition to either stable maximal desynchronization
R = 0 when ξ0 = 0 or avalanche dynamics when ξ0 > 0.
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FIG. 4. A cellular automaton traffic model recreates key features of the dynamics. (a) The positions of 60 cars in a toppling cellular
automaton traffic model, visualized in a frame rotating with the mean field. (b) A magnified single avalanche event, and (c) the order parameter
R. (d) R vs the deviation between the mean field and the mean intrinsic frequency. The (e) power spectral density (PSD) and (f) Hurst scaling
plot, with power-law exponents annotated, and (g) the topple duration vs size, annotated with the Spearman correlation coefficient. Error ranges
comprise bootstrapped standard deviations.

Together, Eqs. (2) and (3) constitute a damped Burgers
equation with nonlocal forcing; previous studies have demon-
strated that Burgers and Kardar-Parisi-Zhang models can
exhibit critical dynamics when driven by noise [63,64]. We
therefore seek to recreate avalanches observed in our discrete
simulations by reintroducing noise (ξ0 > 0) into Eq. (3). This
produces a stochastic differential equation dR = F (R)dt +
ξ0 G(R)dW , where the deterministic term F (R) is given by the
right-hand side of Eq. (5), and G(R) = −[R(t )/2π ]P(R(t ))
(see Appendix D). We simulate this Stratonovich process for
a long duration with different pairs V0/K and σω, discard a
transient period, and then report the long-timescale statistics
of R(t ) in Fig. 5. We record the mean R to facilitate com-
parison with Eq. (5), and we record the variance in R(t ) to
measure the presence and degree of fluctuations in R due to
avalanching. We observe that key features of the phase space
exactly match between the discrete simulations and theoretical

results, despite the relative simplicity of our rearrange-
ment model. Moreover, the analytic stability boundary V0 =
πN (K − 2σω ) determines the onset of fluctuations (Fig. 5,
dashed red traces), which only occur when the maximally
desynchronous state R = 0 is stable. Thus, while our noise
term does not explicitly model small-scale details of rear-
rangements, it shows that they essentially act as a source of
random variation that is amplified by the dynamics at interme-
diate values of V0/K . Differences between the theoretical and
observed results are most apparent in the shape and decay of
the threshold between partial synchronization and avalanches
(or maximal desynchrony when ξ0 = 0); a more detailed mi-
croscopic rearrangement model would likely resolve these
discrepancies. We note that beyond capturing the general
form of phase space, the continuum model captures nontrivial
properties of our observed avalanches, such as an uptick in the
relative amplitude of R fluctuations when σω ≈ 0.1–0.3.
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FIG. 5. A stochastic continuum model summarizes the phase space of avalanches. (a) The empirical phase space of fluctuations in R as the
standard deviation of oscillator frequencies and relative repulsion strength are varied, and the corresponding phase space for the continuum
model with ξ0 = 1. The analytic stability boundary for the continuum model is overlaid (red dashed traces). The white horizontal dashed
lines indicate a cross section of the phase space plotted in (b), which shows a bifurcation diagram comprising the extrema taken by R during
steady-state fluctuations as V0/(πNK ) increases.

IV. DISCUSSION

We have shown that a minimal generalization of classical
synchronization models produces unexpectedly rich dynam-
ics, mirroring those of systems exhibiting self-organized
criticality and avalanches. We anticipate potential applications
of our model to understanding avalanchelike dynamics seen
in real-world oscillator networks, ranging from power grids
[29], to financial markets [28], to neuronal circuits in the
brain [27]. Our observed dynamics exhibit power-law scaling
of power spectral density, multifractality, burst buildup, and
other characteristic features of self-organized critical phenom-
ena [65]; for example, neuronal avalanches have previously

been reported to exhibit power spectral densities with critical
exponents between 1 and 2, and Hurst exponent ∼0.7 [53,66–
69]. However, while the Kuramoto model has frequently been
used as a minimal model of neuronal synchronization [8,9],
further study is needed in order to determine whether neu-
rons undergoing avalanches can be mapped onto our modified
Kuramoto model—particularly because real-world neuronal
networks have sophisticated spatial structure and highly non-
linear interactions [8,35]. Nonetheless, our results suggest
that even neurons with a simple interaction scheme (all-to-all
coupling) could produce avalanches when individual neurons
have a negative region in their phase-response curve [70], a
property that was recently shown to induce complex dynam-
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FIG. 6. Dependence of avalanche dynamics on the number of
oscillators. (a) The power spectral density, with slopes correspond-
ing to power-law decay exponents shown in the inset, for R from
simulations of 20 (blue), 40 (turquoise), and 60 (yellow) oscillators
with Gaussian repulsion. (b) A Hurst plot of the rescaled range
vs measurement timescale, a measure of fractality for time series,
with slopes corresponding to Hurst exponents shown in the inset.
(c) Avalanche duration vs size, with Spearman correlations shown
in the inset. All error ranges correspond to bootstrapped standard
deviations.

ics in experimental oscillator networks [71]. We speculate
that, in our model, short-range phase repulsion acts analo-
gously to synaptic depression, in which neurons inhibit one
another over short time periods due to local depletion of
a neurotransmitter—a mechanism that has previously been
shown to be sufficient to produce avalanches with comparable
statistical properties to our system [34,35,72]. More broadly,
our work provides a minimal example of globally coupled
oscillators that produce dynamics poised between synchrony
and disorder, illustrating how critical dynamics can increase
the sensitivity of real-world oscillator ensembles to noise and
external perturbations.

The PYTHON 3 code used to simulate the repulsive oscilla-
tor model is available [73].
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APPENDIX A: NUMERICAL SIMULATIONS AND
ANALYSIS TECHNIQUES

All potential functions are defined on the range [0, 2π ],
with width parameters that scale inversely with N . For the
triangular potential function, the derivative (comprising two
square functions) is calculated and smoothly approximated
using a superposition of logistic functions. The qualitative
appearance and properties of the avalanches do not vary as
the smoothness of the logistic approximation is varied. The
results of varying V0 and N are shown in Figs. 6 and 7.

Numerical integration is performed using the method
of lines. Several solvers and time steps were tested and
compared (see Appendix F below); we found best re-
sults using a standard LSODA solver as interfaced by
SCIPY.INTEGRATE.SOLVE_IVP. Before integrating, we compile

FIG. 7. Dependence of avalanche magnitude on repulsion radius.
The amplitude of critical fluctuations as the radius of repulsion is
varied.

the right-hand side of the dynamical equation using NUMBA (a
just-in-time compiler for PYTHON).

All power-law fits, error ranges, and visualizations are
calculated using recommended best-practice techniques based
on the cumulative distribution function [74], as implemented
in the POWERLAW PYTHON package [75]. We use the default
methods recommended for fitting power laws: optimal xmin

and xmax are found by computing the minimum Kolmogorov-
Smirnov distance between the data and the fit, and we confirm
the quality of our model by performing a goodness-of-fit test
between our data and the power-law model, which we com-
pare against stretched exponential and lognormal distributions
[74]. All fits were repeated across 500 time series in order to
generate error bars.

Hurst exponents and scaling plots are produced using the
standard R/S algorithm [76] with random sample consensus
(RANSAC) fitting, as implemented in NOLDS [77]. Observed
R/S scalings and calculated Hurst exponents were confirmed
by comparing against surrogate time series with shuffled data.
Equivalent scaling exponents were observed using detrended
fluctuation analysis; however, we favor reporting Hurst ex-
ponents due to the stationarity of our time series [78] and
the relative interpretability of Hurst exponents for multifractal
time series.

When calculating avalanche size and duration, we use a
numerical peak-finding algorithm to find all extrema in a time
series of R(t ). We define the size of an event as the differ-
ence between a maximum and the next minimum. We define
the duration of an avalanche as the number of time points
that elapse between two successive minima. We compute
Spearman correlations between these two quantities, and we
generate error ranges for the reported correlation coefficients
by bootstrapping 500 randomly chosen subsets of the time
series.

In order to compute the rearrangement fraction as a func-
tion of time, we assign each oscillator a unique label and
then track the ordering of this set over time. For each pair
of adjacent time points, we compute the normalized Kendall
tau distance, a measure of the dissimilarity of two ordered
sets of equal measure. In order to account for the periodic
boundary conditions, we compute this distance not only for
the observed orderings, but also for all circular shifts of the
orderings, and we use the minimum among all shifts as the
normalized cyclic Kendall tau distance. Because our method
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of detecting rearrangements relies on permutations, the reso-
lution matches that of the numerical integration: We will not
detect rearrangements on scales shorter than the integration
time step. However, because the oscillators are localized to
within floating point precision, we expect that all observed
rearrangements will be accurate.

APPENDIX B: CONTINUUM LIMIT OF THE SUMMED
REPULSIVE INTERACTIONS

The dynamical equation for θ̇ j contains the term

1

N

N∑
k=1

d

dθ j
V (θ j, θk ), (B1)

where V (θ j, θk ) = V (d (θ j, θk )) and d is a distance function
on the unit circle that gives the shortest signed angular dis-
tance along the unit circle (wrapping around at π ), d (θ j, θk ) =
mod(θ j − θk − π, 2π ) − π .

We take the continuum limit of Eq. (B1), and we assume
that V decays sufficiently quickly that V (θ j, θk ) → 0 as |θ j −
θk| → π , and so V (θ j, θk ) = V (θ j − θk ). Equation (B1) then
has the form of a convolution,

∫
f (θ ′)

d

dθ
V (θ − θ ′) dθ ′, (B2)

where f (θ ′) is a probability distribution of phases on the
interval [0, 2π ]. Next, we note the following property of con-
volutions:

d

dt
( f ∗ g) = f ∗ dg

dt
= df

dt
∗ g.

We therefore exchange the derivatives in Eq. (B2),

∫
df

dθ
V (θ − θ ′) dθ ′. (B3)

We assume that, in the continuum limit N → ∞, V (θ −
θ ′) → δ(θ − θ ′), which holds true as long as V is compact
and has a width parameter that decreases as N increases [as
we require for V (·) in the main text]. For example, if V
corresponds to a Gaussian distribution V = Gμ=0,σ , then this
is equivalent to the condition σ = σ0/N with σ0 constant. In
this case, Eq. (B3) simplifies to ∂θ f . The full continuous-time
dynamical equation thus becomes

∂t f + ∂θ (v f ) = 0,

v ≡ ω + K
∫

f (θ ′) sin(θ ′ − θ )dθ ′ − (V0/N )∂θ f .

(B4)

The factor of N on the repulsive term appears because we
defined the discrete system in the main text extensively: As
the number of oscillators N increases, the maximum force
attainable by overlapping oscillators also increases by a factor
of N .

APPENDIX C: OTT-ANTONSEN REDUCTION
WITHOUT NOISE

The dynamics of a continuous distribution of oscillators in
the absence of noise is given by

∂t f + ∂θ (v f ) = 0, (C1)

where

v(θ, ω, t ) = ω + K
∫ ∞

−∞

∫ 2π

0
f (θ ′, ω, t ) sin(θ ′ − θ )dθ ′dω

− V0

N
∂θ f (θ, ω, t ). (C2)

We define the order parameter, z(t ),

z(t ) =
∫ ∞

−∞

∫ 2π

0
f (θ ′, ω, t )eiθ ′

dθ ′dω,

for which Eq. (C2) reduces to the form

v(θ, ω, t ) = ω + K

2i
(ze−iθ − z̄eiθ ) − V0

N
∂θ f (θ, ω, t ).

Following previous applications of the Ott-Antonsen re-
duction [3,60,79–81], we express the angular distribution of
oscillators in terms of its Fourier series expansion

f (θ, ω, t ) = g(ω)

2π

(
1 +

∞∑
n=1

an(ω, t )einθ + ān(ω, t )e−inθ

)
,

(C3)

where g(ω) is the distribution of frequencies across the popu-
lation, g(ω) = ∫ 2π

0 f (θ ′, ω, t )dθ ′.
The Ott-Antonsen ansatz is a low-order closure for this

moment series, an(ω, t ) = a(ω, t )n, ān(ω, t ) = ā(ω, t )n. In-
serting this ansatz into Eq. (C3), and then inserting the result
into Eq. (C1), results in the equation

ȧ(ω, t ) = −a(ω, t )

2π
(2π iω − πK + πK|a(ω, t )|2

+ (V0/N )P(|a(t )|)), (C4)

with P(q) ≡ 1 + q2 + q4 + q6 + q8. Using the definition of
the order parameter, we perform the substitution

z(t ) =
∫ ∞

−∞
g(ω)ā(ω, t )dω, z̄(t ) =

∫ ∞

−∞
g(ω)a(ω, t )dω.

We next choose g(ω) to be a Cauchy distribution with zero
mean g(ω) = (σω/π )[1/(ω2 + σ 2

ω )]. This yields the relation
z(t ) = ā(−iσω, t ), z̄(t ) = a(−iσω, t ).

We next apply the substitutions a(−iσω, t ) =
R(t ) exp[−i�(t )], ā(−iσω, t ) = R(t ) exp[i�(t )], |a(t )| =
R(t ). The real and imaginary parts of the resulting dynamical
equation yield the separate dynamics of Ṙ(t ), �̇(t )

Ṙ(t ) = −σωR(t ) − R(t )

2π
(πK[R(t )2 − 1] + (V0/N )P(R(t ))),

�̇(t ) = ω, (C5)

with high-degree polynomial P(R(t )) ≡ 1 + R(t )2 + R(t )4 +
R(t )6 + R(t )8. Thus, regardless of the value of the order pa-
rameter R(t ), the oscillators find a state where all corotate at
their common frequency ω.
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FIG. 8. Exact vs approximate solution to the dynamics without
noise. The steady-state solution of the full dynamics, parametrized
by V0 and σω, for the exact dynamics and those given by the quartic
approximate solution. For these plots, ξ0 = 0.

The steady-state values of the order parameter may be
calculated by substituting Ṙ(t ) = 0 into Eq. (C5)

0 = π (2σω − K ) + KπR(t )2 + (V0/N )P(R(t )). (C6)

The steady states of this equation, as well as the eigen-
values defining their stability, may be solved exactly using
existing formulas for the roots of polynomial equations; how-
ever, the form of these solutions is not concise, and so we
do not reprint them here. These exact solutions predict that
0 < R(t ) < 1 as t → ∞ when V0 < πN (K − 2σω ) and that
R(t ) = 0 as t → ∞ when V0 > πN (K − 2σω ). Thus, as the
relative strength of the repulsive interaction increases, the
steady-state value of the order parameter (and thus degree
of synchronization) decreases until reaching zero at V0 =
πN (K − 2σω ). As the repulsive interaction further increases,
the steady state remains at zero. Thus, at V0 = πKN , the
system undergoes a transcritical bifurcation.

To better illustrate the behavior of the full solution, we
note that a concise approximate solution may be found by
noting that R(t )2 + R(t )4 + R(t )6 + R(t )8 ≈ 2R(t )4 on the in-
terval R(t ) ∈ [0, 1]. Performing this substitution into Eq. (C6)
results in an approximate solution with the form

R = 0, R ≈
√

2

4

√√√√√
u2 + 16(u − 1) − 16

(
2πσω

V0

)
− u,

where u ≡ πK/V0. These solutions have respective
eigenvalues

λ0 = 1

2

(
K − 2σω − V0

πN

)
,

λ1 = 4σω − 2K − πK2N

8V0
+ 2V0

πN

+ NK2

8V0

√
π2 + 16πV0

KN
− 16V0

K2N

(
2σωπ + V0

N

)
.

Both the full and approximate solutions undergo a transcritical
bifurcation at V0 = πN (K − 2σω ). Figure 8 shows the full
and approximate solutions for several values of K , V0, and
σω, illustrating the transcritical bifurcation between partial
synchrony and maximal desynchrony.

APPENDIX D: OTT-ANTONSEN REDUCTION
WITH NOISE

1. Rearrangements as noise proportional to the gradient

We use a heuristic model of rearrangements as a form of
noise acting on the reduced-order dynamics of the oscillators
in the continuum limit found above. Because the noise force
must affect the dynamics of the order parameter R(t ), there are
restrictions on how it can enter into the dynamical equations
for the evolution of the oscillator phase distribution f (θ ). We
emphasize that our noise force ξ does not describe Langevin
dynamics of individual oscillators. Rather, we assume deter-
ministic microscale dynamics and then derive a continuum
model using the Ott-Antonsen ansatz, and we then introduce
the stochastic forcing term ξ acting directly on the mean-field
dynamics of R, in order to “seed” random toppling events.

We start with the hydrodynamic equation for the time
evolution of the oscillator distribution f (θ ), as well as the
Ott-Antonsen ansatz for the form of f (θ ),

∂t f + ∂θ (v f ) = 0, f = 1

2π

(
1 +

∞∑
n=1

aneinθ + c.c.

)
.

(D1)
We define v = v0(θ, t ) + vξ (θ, t ), where v0(θ, t ) refers to the
forcing on oscillators in the absence of noise,

v0 = ω + K

2i
(Ze−iθ − Z̄eiθ ) − V0

N
∂θ f ,

and vξ (θ, t ) refers to the noise term in the oscillator dynamical
equations. In the following sections, we insert this term and
various forms of vξ (θ, t ) into the derivation of Appendix C,
in order to determine how various forms of noise affect the
dynamics of the order parameter R(t ).

Additive case. One option for the presence of noise in
Eq. (C1) is vξ (θ, t ) = ξ (t ), such that v = v0 + ξ (t ). In this
case, Ṙ(t ) has a form identical to Eq. (C5). The noise solely
affects the dynamics of the phase,

�̇(t ) = ω + ξ (t ).

Multiplicative case. Another option for the presence of
noise in Eq. (C1) is vξ (θ, t ) = f (θ )mξ (t ), such that v = v0 +
f (θ )mξ (t ), where m > 0. For the case of m = 1, Eq. (C4) has
the form

ȧ(t ) = − a(t )

2π
(2π iω − πK + πK|a(t )|2

+ [V0/N + 2iξ (t )]P(|a(t )|))
with high-degree polynomial P(q) ≡ 1 + q2 + q4 + q6 + q8.
This corresponds to Ṙ(t ) having an identical form to Eq. (C5),
while the phase �(t ) has dynamics given by

�̇(t ) = ω + ξ (t )

π
[1 + R(t )2 + R(t )4 + R(t )6 + R(t )8].

A similar derivation may be used to show that the dynamics
of R(t ) are unaffected by multiplicative noise to arbitrary
order m.

Gradient case. A final option for the presence of noise
in Eq. (C1) is vξ (θ, t ) = ∂m f (θ )

∂θm ξ (t ), such that v = v0 +
∂m f (θ )

∂θm ξ (t ), where m > 0. For the case of m = 1, Eq. (C4) has
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the form

ȧ(t ) = − a(t )

2π
(2π iω − πK + πK|a(t )|2

+ [V0/N + ξ (t )]P(|a(t )|))
with high-degree polynomial P(q) ≡ 1 + q2 + q4 + q6 + q8.
This corresponds to dynamics given by

Ṙ(t ) = − σωR(t ) − R(t )

2π
(πK[R(t )2 − 1]

+ [V0/N + ξ (t )]P(R(t ))),

�̇(t ) = ω.

Thus we find that the simplest manner in which noise can
affect the dynamics of R(t ) is through a term proportional to
the phase density gradient.

2. Derivation of stochastic differential equation

Based on our analysis of the dynamical equations above,
we assume that the noise enters the dynamical equations
through a term of the form ∂ f (θ )

∂θ
ξ (t ). As seen above, this is

equivalent to making the substitution V0/N → [V0/N + ξ (t )]
in the dynamical equations. Isolating terms in Ṙ(t ) by their
order in ξ (t ) reveals that the dynamics have the form of a
Stratonovich process,

dR = F (R)dt + ξ0G(R)dW, (D2)

where ξ0 is a noise amplitude term and

F (R) = − σωR(t ) − R(t )

2π
(πK[R(t )2 − 1] + (V0/N )P(R(t ))),

G(R) = − R(t )

2π
P(R(t )).

with high-degree polynomial P(R(t )) ≡ 1 + R(t )2 + R(t )4 +
R(t )6 + R(t )8. Note that the first “drift” term is identical to
the dynamical equation for the zero-noise limit, Eq. (C5).
For this study, we assume a standard Langevin noise term,
〈ξ (t )ξ (t ′)〉 = ξ0δ(t − t ′), making W a Wiener process. Using
these definitions, we numerically simulate Eq. (D2) using the
Euler-Maruyama method.

APPENDIX E: CELLULAR AUTOMATON
TRAFFIC MODEL

Our cellular automaton model is a modified version of the
Nagel-Schreckenberg traffic model [58,59,82]. The original
model evolves on a one-dimensional ring of L sites, each of
which can be either occupied (1) or unoccupied (0). Each
occupied site represents a “car,” and cars cannot overlap or
overtake one another. In the original model, fluctuations in the
speed of one car (due to random braking events, for example)
provoke the spontaneous formation of large jams of cars posi-
tioned bumper to bumper within the circular domain. The jam
breaks up only when enough time has elapsed for cars at the
head of the jam to accelerate away from the jam.

To capture our hypothesized mechanism for jamming
in the repulsive oscillator model, we modify the Nagel-
Schreckenberg model in two key ways: (1) Cars travel in

motorcades in which all cars are attracted to the mean location
of all cars, even if it is behind them. (2) In high-density
regions, “toppling” events occur that are the one-dimensional
equivalent of topples in classical sandpile models of criti-
cality [47]. For each car in the motorcade, if the number of
cars directly afore it exceed those directly behind it (or vice
versa), then the car has some probability of moving to the
nearest unoccupied lattice site. This probability increases as
the difference in afore and aft cars increases. Overall, this
probabilistic toppling rule causes cars located in regions of
a jam with a high pressure differential to locally rearrange
their positions within the jam more frequently, by analogy
to gradient-driven rearrangements among oscillators in our
repulsive oscillator simulations.

All together, our cellular automaton model comprises the
following steps:

(a) Initialization. For a given density parameter ρ, M =
floor(ρ L) sites are randomly chosen to have cars at the start
of the simulation. A set of random, integer velocities {vi}, vi ∈
{0, 1, . . . , vmax}, is assigned to the set of cars. In subsequent
time steps, the locations of all of the cars are then updated
according to the following rules.

(b) Iteration. Within each time step of the model, the fol-
lowing steps are performed:

(b1) Calculation of the mean location. The mean location
of all M cars, x̄, is calculated. For each car i, the number of
sites di between its location xi and the mean location x̄ is
then calculated. Periodic boundary conditions are assumed;
if the forward distance along the circle is more than L/2
sites, then the negative backward distance is used. Therefore
di ∈ [−L/2, L/2].

(b2) Mean-field velocity update. The velocity of each car,
vi, is updated using the following relation: vi ← (1 − s) vi +
s di. The synchronization parameter s is treated as a model
parameter: If s = 0, then the mean location does not affect the
cars’ velocities at all; however, if s = 1, then the cars always
instantaneously update their velocity to their distance from the
mean location.

(b3) Toppling of large jams. From the list of x positions,
jams are identified as sequences of consecutive 1 values in the
ring of L car positions. These jams are “toppled” according to
the following rules:

(i) In each jam, the pressure gradient on each car in
the jam, ∂ pi, is calculated as the number of cars behind it
in the jam minus the number of cars in front of it in the
jam. For example, the jam corresponding to the sequence
0,1,1,1,1,1,0 corresponds to a sequence of pressure gradient
values 0,−4,−3, 0, 3, 4, 0. In order to remain physical, a
cutoff parameter is imposed, which corresponds to a maxi-
mum radius over which to impose the gradient. For example,
with a cutoff radius of 2, the pressure gradient of the jam
0,1,1,1,1,1,0 is 0,−2,−1, 0, 1, 2, 0.

(ii) A random subset is chosen of all the cars that currently
exceed a threshold |∂ pi| > pthresh. Cars with larger pressure
gradients have a larger probability of being chosen. We note
that the value of pthresh sets the average frequency and am-
plitude of toppling events but does not otherwise affect the
dynamics.

(iii) Among all cars in the random subset, the velocity of
each car in the jam is increased by an amount proportional to
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FIG. 9. Numerical robustness of avalanche results. (a) Example
trajectories of the Kuramoto order parameter, for different integration
methods (colors) and for different maximum time steps (panels).
Trajectories for the LSODA and Runge-Kutta methods are obscured
by the Dormand-Prince trajectory in the lower two panels, indicat-
ing strong agreement. (b) Mean-square error between the observed
trajectories, and a fiducial trajectory calculated with maximum time
step of �t = 10−7. Error bars correspond to replicates with differ-
ent initial conditions. For this panel, N = 40, K = 0.4, V0 = 0.8,
σω = 0.2.

the pressure gradient, vi ← vi + f ∂ pi, where f is the ampli-
tude of the rearrangement force.

(b4) Acceleration and maximum velocity. The speeds of all
cars are increased by 1, vi ← vi + 1. Any cars that have a
velocity greater than the maximum velocity are reset to the
maximum velocity, vi ← min{vi, vmax}.

(b5) Braking to avoid collisions. The distance between each
car and the next car in front of it is calculated in order to
produce a set of spacings ηi. For cars that have a velocity

larger than the spacing, the velocity is reset to equal the
spacing, vi ← min{ηi, vmax}. Following the original Nagel-
Schreckenberg model, among the cars that brake, a random
subset is chosen to “overbrake” by 1 unit, v

samp
i ← v

samp
i − 1,

with probability pbrake.
(b6) Position update. The positions of all cars are updated

using the final value of the velocity, xi ← xi + vi.
The primary parameters that govern the behavior of the

model are the density ρ, the synchronization parameter s,
the magnitude of the critical force pthresh, and the fraction
of cars that overbrake, pbrake. Consistent with the original
Nagel-Schreckenberg model, if pthresh approaches 1, the size
and duration of jams increase.

APPENDIX F: NUMERICAL STABILITY OF AVALANCHES

Due to the separation of timescales between synchroniza-
tion and repulsion in our system, we consider the degree to
which our observed dynamics are robust to details of the
numerical integration scheme, in order to rule out numerical
artifacts. We compute an expensive fiducial trajectory using
an integration time step of �t = 10−7, and we use it to
assess the accuracy of trajectories generated with different
numerical integrators and time steps (Fig. 9). Across three
different integrators (two fixed-step, one variable-step), we
find that long-timescale simulations are consistent as long as
the maximum time step is less than 10−4, and that the accuracy
is highest for LSODA.
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