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Abstract
Living systems operate far from equilibrium, yet few general frameworks provide global
bounds on biological transients. In high-dimensional biological networks like ecosys-
tems, long transients arise from the separate timescales of interactions within versus
among subcommunities. Here, we use tools from computational complexity theory to
frame equilibration in complex ecosystems as the process of solving an analogue opti-
mization problem. We show that functional redundancies among species in an ecosys-
tem produce difficult, ill-conditioned problems, which physically manifest as transient
chaos. We find that the recent success of dimensionality reduction methods in describ-
ing ecological dynamics arises due to preconditioning, in which fast relaxation decou-
ples from slow solving timescales. In evolutionary simulations, we show that selection
for steady-state species diversity produces ill-conditioning, an effect quantifiable using
scaling relations originally derived for numerical analysis of complex optimization prob-
lems. Our results demonstrate the physical toll of computational constraints on biological
dynamics.

Author summary
Distinct species can serve overlapping functions in complex ecosystems. For exam-
ple, multiple cyanobacteria species within a microbial mat might serve to fix nitrogen.
Here, we show mathematically that such functional redundancy can arbitrarily delay
an ecosystem’s approach to equilibrium. We draw a mathematical analogy between
this difficult equilibration process, and the complexity of computer algorithms like
matrix inversion or numerical optimization. We show that this computational complex-
ity manifests as a transient chaos in an ecosystem’s dynamics, allowing us to develop
scaling laws for the expected length of transients in complex ecosystems. Transient
chaos also produces strong sensitivity on the duration and route that the system takes
towards equilibrium, affecting the ecosystem’s response to perturbations. Our results
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highlight the physical implications of computational complexity for large biological
networks.

Introduction
Half a century ago, the biologist Robert May used random matrix theory to show that large,
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random ecosystems are typically unstable—challenging conventional understanding of
biodiversity, and suggesting that structural and evolutionary factors tune biological networks
towards stable equilibria [1]. But how relevant is stability to real-world biological systems?
In physics, high-dimensional dynamical systems typically undergo extended excursions
away from stable fixed points. For example, while a fluid flowing through a pipe possesses a
globally-stable laminar state, small disturbances trigger transient turbulent excursions with
expected lifetimes that increase rapidly with the flow speed [2].

Transient effects dominate many real-world foodwebs over experimentally-relevant
timescales; examples include cyclic succession among rival vegetation species [3], turnover
in patchy phytoplankton communities [4], and establishment of gut microbiota [5]. Theo-
retical works confirm that long-lived transients robustly appear in model foodwebs as the
number of interacting species increases [6–8]. Transients may thus influence how real-world
ecosystems respond to exogenous perturbations [9], with implications for management and
biodiversity [3]. However, analytical techniques primarily consider the effects of small per-
turbations from equilibrium points, thus characterizing transients in terms of local quanti-
ties like reactivity or finite-time Lyapunov exponents [9–13]. Such approaches successfully
predict experimental phenomena such as critical slowdown near tipping points in microbial
ecosystems [12,14], but they provide less insight into community assembly or large changes
(e.g., crises) [15]. Recently, statistical approaches extend local measures by characterizing
the distribution of fixed points in random ecosystems; these methods calculate the frequency
and stability of local minima and marginally-stable equilibria, which act as kinetic traps that
impede equilibration [6,16–19]. Statistical approaches also bound the set of valid solutions for
a given ecosystem, thus providing null models against which experimentally-observed com-
munities are assessed [20–22]. However, few analytical approaches directly characterize the
global structure of ecological transients, and it remains unknown whether universal, statis-
tical bounds—analogous to the flow speed in turbulence—govern the onset of transients in
ecological networks.

Here, we show that computational complexity measures from optimization theory govern
the equilibration of ecological networks. We introduce a class of ill-conditioned ecosystems,
for which functional redundancies among species control the rate of approach to equilibrium.
We show that the resulting system maps onto a numerical optimization problem, the com-
putational difficulty of which depends on the degree of redundancy. We show that computa-
tional complexity leads to transient chaos, in which routes to equilibrium depend sensitively
on the initial conditions or assembly sequence of the ecosystem. When dimensionality reduc-
tion methods, such as principal components analysis, are applied to the resulting dynamics,
they precondition the dynamics by separating fast relaxation from slow ”solving” dynamics
associated with redundant species. We conclude by using genetic algorithms to evolve random
ecosystems to support higher steady-state diversity, which we find increases ill-conditioning
and thus optimization hardness. Our results frame ecological dynamics through analogue
optimization hardness, and show how computational constraints on biological systems pro-
duce physical effects.
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Fig 1. Functional redundancy as low-rank interspecific interactions. (A) A three-level food web, in which lower levels contain multiple species that duplicate
one other’s role. (B) The interspecific interaction matrix decomposes into a full-rank group-level component, and a low-rank assignment matrix mapping species
to groups. Small-amplitude variations among taxa within each group restore the rank, but lead to high condition number. The exact form of the interaction
matrix is given by Eq 3.

https://doi.org/10.1371/journal.pcbi.1013051.g001

Materials and methods
We study a minimal model of an ecological network described by the generalized Lotka-
Volterra model

ṅi(t) = ni(t)
⎛
⎝
ri +

N
∑
j=1

Aijnj(t)
⎞
⎠
, (1)

where ni(t) refers to the abundance of species i with intrinsic growth rate ri. This species
interacts with other species in the community through the matrix A∈ℝN×N. A full table of
symbols and their definitions is given in Appendix 1. Each matrix element Aij quantifies the
degree to which species j promotes (Aij > 0) or inhibits (Aij < 0) the growth of species i. While
Eq 1 simplifies the complex mechanics of real-world ecosystems, its general form—growth
modulated by pairwise interactions with other species—captures phenomena seen in real
ecosystems [23].

The interaction parameters Aij are typically unknown for large ecosystems because they
require N(N – 1)/2 separate isolation experiments. Instead, classical works in mathemat-
ical biology randomly sample the elements of A from a fixed probability distribution, and
then consider the typical behavior of solutions of A averaged across a large sample of possible
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ecosystems [1]. Typically, A is sampled from the class of matrices,

A =A(0) – d I (2)

where the elements of A(0) are drawn from a normal distribution, A(0) ∼N (0,𝜎), d > 0 is
constant intraspecific density limitation, and I is the identity matrix. The density of a species
i governed by Eq 1 and Eq 2 will initially grow exponentially at a rate ri, before reaching an
asymptotic plateau n∗i at a carrying capacity set by intraspecific crowding or competition (d)
and a mix of cooperative and competitive interactions with other species (A(0)). While Eq 1
can, in principle, produce unphysical ecosystems with unbounded exponential growth, when
the density limitation d is sufficiently high, Eq 1 always has a single stable, non-invasible
global equilibrium. This occurs when A+A⊤ is negative definite, known as Lyapunov diagonal
stability [24].

The model Eq 1 and Eq 2 exhibits a known relationship between stability and steady-state
diversity as N increases. The global fixed point ni(t)→ n∗i has a quantity Ncoex ≤N species
that stably coexist at steady state (n∗i > 0). When Eq 2 is resampled many times to produce
many replicate ecosystems, the expected number of coexisting species Ncoex obeys a binomial
distribution with ⟨Ncoex⟩A =N/2 surviving species on average [23]. Thus, both steady-state
diversity (as measured by Ncoex), and variance across different ecosystems, increase with the
ecosystem size N.

However, prior analyses of Eq 1 primarily characterize the equilibrium state n∗i , and not
the full dynamics ni(t). We thus seek to sample a family of interaction matrices that pro-
duce dynamical transients. In ecology, transients generically arise due to functional redun-
dancy, in which multiple species have nearly-identical roles in an ecosystem, leading to
timescale separation between fast intergroup dynamics and slow intragroup dynamics [4,25,
26]. For example, microbial mats contain multiple similar species performing nitrogen fix-
ation [27]. These redundant species may slightly differ in morphology or genetic composi-
tion, but have identical interactions with all other species [28]. Redundant species may be
grouped into metaspecies such as distinct trophic levels, allowing a coarse-grained descrip-
tion of the system in terms of interactions among these groups (Fig 1A). However, over long
timescales, minute variations lead to slow dynamics within each group. This timescale separa-
tion between fast intergroup and slow intragroup dynamics produces long transients.

We introduce redundant structure into Eq 1 by sampling A from the family of low-rank
matrices,

A = P⊤(A(0) – d I)P + 𝜖 E, (3)

where the assignment matrix P∈ℝN×N encodes exact functional redundancies, and the per-
turbation matrix E∈ℝN×N encodes small differences among redundant species, which have
typical amplitude set by the constant 𝜖 ≪ 1. We draw all parameter values from the unit nor-
mal distribution A(0)ij ,Eij, ri ∼N (0, 1). When P = I, our formulation exactly reduces to prior
models [23]. After sampling A, we set 95% of interactions to zero, to mimic the low con-
nectance (𝜌 = 0.05) of real-world communities [29]. As in prior works, we find this condi-
tion does not affect our observed results as long as the connectance exceeds the percolation
threshold 𝜌 > 1/N (Appendix 1) [23].

When P ≠ I and rank(P) =M <N, the rank-deficient assignment matrix P encodes func-
tional redundancy among species in the population. For example, in a microbial ecosystem,
N corresponds to the full number of resolvable operational taxonomic units (OTU), while M
corresponds to the number of functional niches or trophic groups. In one such scenario con-
sidered in previous work, P represents the identity matrix with the jth column duplicated at

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013051 May 5, 2025 4/ 24

https://doi.org/10.1371/journal.pcbi.1013051


ID: pcbi.1013051 — 2025/5/8 — page 5 — #5

PLOS COMPUTATIONAL BIOLOGY Optimization hardness constrains ecological transients

position k, implying that two species j and k serve exactly indistinguishable functions within
the ecosystem, such as exactly two nearly-identical nitrogen-fixing species in a microbial food
web [17]. For this particular case, P reduces to a rectangular matrix P∈ℝN×M, which maps
between N species and M trophic groups. We visualize this case in Fig 1.

Here, we allow P to encode more general, arbitrary linear combinations of species that
collectively substitute for others within the population, such as microbial consortia [25,30].
When 𝜖 = 0, P and A are rank-deficient and Eq 1 is multistable. Each steady-state solution
occupies a continuous hyperplane of equivalent solutions containing varying mixtures of the
substitutable species. For example, if two nitrogen-fixing species are truly indistinguishable,
then the dynamics of a microbial food web should be insensitive to one-to-one replacement
of one species with the other. As a result, across an ensemble of replicate populations, a wide
range of functionally-equivalent mixtures of species will be observed. However, introducing
the singular perturbation 0 < 𝜖 ≪ 1 breaks this symmetry among exact solutions and restores
full rank (rank(A) =N), causing the system to regain a single global equilibrium n∗. In the
microbial mat example, this corresponds to a minute difference between two nitrogen fixers,
leading to gradual competitive dynamics as one species slowly excludes the other. The result-
ing dynamics exhibit a slow timescale ∼𝜖–1 associated with final approach to equilibrium
(Fig 2A).

Prior theoretical studies show that steady-state degeneracy due to functional redundancy
can be broken by spatial effects, introducing slow dynamical modes associated with a char-
acteristic diffusion time (equivalent to 𝜖–1 in our model) [26]. In the Appendix, we consider
another, previously-studied variant of Eq 1 that exhibits a transition between multistability
and global stability [31–33]. As the system approaches the transition region, we find that it
produces comparable dynamics to our model Eq 3. However, our particular formulation Eq 3
maps the onset of complex dynamics onto a single parameter, the redundancy 𝜖–1, which we
will show has a physical interpretation.

1. Results and discussion
Functional redundancy produces long-lived transients
We simulate the dynamics of 104 random ecosystems of the form Eq 1, with interspecific
interactions A and functional redundancy 𝜖–1 sampled randomly according to Eq 3. Across
many random ecosystems, we find that increasing functional redundancy (𝜖 → 0) delays
approach to steady-state, implying that slow competition among similar species limits the rate
of equilibration. Varying 𝜖 over five orders of magnitude, we observe a power law increase
in the settling time 𝜏 that it takes each ecosystem to first reach the global equilibrium n∗

(Fig 2B).
To understand this scaling, we note that the particular form of Eq 1 requires that each

steady-state solution n∗ solves the constrained linear regression problem –An∗ = r, n∗i ≥ 0. We
therefore frame approach to equilibrium in complex ecosystems as a computational challenge:
given a set of constraints imposed by the interactions A, we seek the corresponding equilib-
rium n∗ that solves the linear program in Eq 1. In the theory of numerical optimization, the
intrinsic difficulty of a computational problem determines the minimum time that an algo-
rithm takes to solve it [34]. We thus expect that the lifetime of ecological transients relates to
the intrinsic difficulty of the linear optimization problem defined by Eq 1, which is quanti-
fied by the condition number, 𝜅(A)≡ ∥A∥∥A–1∥. A condition number 𝜅 ∼ 100 implies that A
may easily be inverted to solve for n∗. However, as 𝜅 →∞, algorithms for solving the system
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Fig 2. Long-lived transients in ill-conditioned ecosystems. (A) Equilibration of a random food web without (top) and with (bottom) a pair of functionally-
redundant species. Long-lived transients appear in the latter case. (B) Settling time 𝜏 versus condition number 𝜅 for 104 random communities; dashed line shows
the scaling expected for an iterative linear program solver.

https://doi.org/10.1371/journal.pcbi.1013051.g002

become increasingly sensitive to small errors; the expected number of digits of required pre-
cision increases as ∼ log10 𝜅 [34]. In a continuous natural system like Eq 1, sensitivity at large
𝜅(A) leads to transient chaos, which we explore in the next sections.

We expect that ecosystems become ill-conditioned as redundant species become harder
to distinguish. In numerical analysis, iterative solutions of linear programs exhibit a known
bound on convergence time 𝜏 = log 𝜉/ log[(𝜅 – 1)/(𝜅 + 1)] where 𝜉 is the initial distance from
the solution (Fig 2B, dashed line) [34]. We find that this bound coincides with the scaling of
the settling time 𝜏 in random ecosystems, underscoring the physical effects of ill-conditioning
in our system. Rather than a purely numerical consideration, 𝜅 is a physical quantity that
can be interpreted as a measure of computational complexity or inverse distance to an ill-
conditioned (here, degenerate) problem [35]. As a result, despite the heterogeneity of the vari-
ous random ecosystems in Fig 2B, the quantity 𝜅 imposes a global constraint on equilibration
time. Thus, while Eq 1 represents a model foodweb, we find that analytic predictions can be
generated by interpreting ecosystems as computational optimization problems.

Dimensionality reduction optimally preconditions the dynamics
Given a high-dimensional experimental time series of species abundances, dimensional-
ity reduction techniques are frequently used to map the dynamics to reduced-order coordi-
nates [17]. For example, when principal components analysis is applied to time series from a
microbial ecosystem, the leading principal components correspond to groups of dynamically-
correlated species that serve equivalent functions, such as producers, consumers, or scav-
engers [17,36]. These groups of strongly-correlated species, termed ecomodes, identify species
that act in concert, and thus reveal functional redundancy directly from observed dynamics.

We apply these methods to a sample of trajectories from an N = 103-dimensional ill-
conditioned ecosystem by embedding the dynamics into two dimensions using principal
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components analysis (Fig 3A, black traces). We find that trajectories originating from diverse
initial conditions become trapped along a low-dimensional manifold. Setting 𝜖 = 0 and then
reintegrating each trajectory reveals that this manifold comprises a set of degenerate equilib-
ria, which becomes a trapping region when 𝜖 > 0 (Fig 3A, blue points). Gradual traversal of
this slow manifold generically produces long transients; trajectories approach the global fixed
point only after escaping the slow manifold. Slow transients due to weakly-unstable solutions
have previously been characterized in complex foodwebs [3], and they particularly arise in
systems with cyclic dominance and succession [4]. These slow manifolds represent a subspace
within the full N-dimensional phase space on which intragroup dynamics unfold. For exam-
ple, if one of two nearly-redundant nitrogen-fixing species in a microbial mat has a slightly
higher survival rate, its gradual exclusion of the less-fit species occurs along the slow man-
ifold. In numerical analysis, optimization of random high-dimensional landscapes is often
dominated by saddle points, which become exponentially more likely than local minima as
problem dimensionality grows [37]. Recent theoretical results confirm this effect for Eq 1 in
the well-conditioned (P = I) limit: as the number of species grows, the system spends more
time trapped near unstable equilibria [7,18,32,38]. We thus attribute the empirical success of

Fig 3. Slow manifolds form a complex optimization landscape. (A) An embedding of 103 trajectories with differ-
ent initial conditions in an ill-conditioned ecosystem (𝜖 > 0). The global equilibrium is marked with a star, and the
corresponding solutions of the degenerate (𝜖 = 0) case are overlaid (blue). (B) Time that ill-conditioned trajectories
for different random ecosystems (colored by condition number) spend near the former (𝜖 = 0) solutions, versus the
solution’s Morse instability index. (C) Projection of a single trajectory onto the right singular vectors associated with
the largest (red) and smallest (blue) singular values.

https://doi.org/10.1371/journal.pcbi.1013051.g003
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dimensionality reduction for ecological datasets to the existence of slow manifolds, which rep-
resent low-dimensional trapping regions within the full N-dimensional space in which the
dynamics unfold.

Because our formulation Eq 1 contains slow manifolds induced by the symmetry-breaking
perturbation 𝜖, we consider the degree that these manifolds globally shape the dynamics.
Recent work on low-rank structure in large datasets ties low effective dimensionality to the
structure of underlying interaction networks [39]. Any interaction matrix A admits a real-
valued singular value decomposition of the form A =UΣV⊤, where the diagonal matrix
Σ ∈ℝN×N contains the singular values 𝜎i of A in decreasing order along its main diagonal
(Fig 4) [34]. Physically, this decomposition isolates groups of related species within the basis
sets U,V∈ℝN×N that fluctuate characteristic timescales 𝜎i. For our interaction matrix Eq 3,
the magnitudes of the singular values, and thus relevant timescales in the system, obey Weyl’s
inequality ∣𝜎i(A) – 𝜎i(A – 𝜖E)∣≤ 𝜖√𝜌N. This implies that A is a low-rank matrix with N–M
singular values ∼ 𝜖 [39]. As a result, the N-dimensional dynamics rapidly converge onto M-
dimensional slow manifolds. These slow modes (formerly stable solutions in the 𝜖 = 0 case)
are misaligned across phase space, leading to a separation between gradual dynamics on slow
modes, and fast high-dimensional transitions among them. On a given mode n∗, we perform
a matched expansion of Eq 1 in terms of 𝜖 and a small perturbation off the slow manifold
n(t) = n∗ + 𝛿n(t), producing the linearized dynamics ̇𝛿ni(t) = n∗i ∑j(Aij𝛿nj(t) + 𝜖Eijn∗j ).
The first term represents linear dynamics governed by the Jacobian of the unperturbed sys-
tem (Jij ≡ n∗i Aij), commonly known as the community matrix [15]. The second term prevents
equilibration by inducing slow ∼𝜖 drift along the manifold. To quantify this kinetic trapping
effect, we numerically identify slow manifolds for each of the random ecosystems shown in
Fig 2B, and measure its relative stability via the scaled Morse instability index, 𝛼 ≡N–/N. The
Morse index quantifies the relative number of unstable “escape” directions N– ≤N emanating
from a given saddle region n∗ based on the eigenvalue spectrum of J. Saddles with relatively
few downwards directions (0 < 𝛼≪ 1) generally take longer to escape, leading to a smaller
Morse index 𝛼. We confirm this effect by directly measuring the escape time for each pseu-
dosolution (Fig 3B). The escape time linearly decreases with 𝛼 across different ecosystems,
consistent with the theoretical expectation for hyperbolic dynamical systems [40].

To better understand dimensionality reduction and ecomode decomposition of ecologi-
cal time series, we separately study the dynamics associated with fast and slow modes. Rather
than directly study the full N-dimensional dynamics n(t), we perform a linear transformation

Fig 4. Singular value decomposition of a species interaction matrix. A schematic of singular value decomposition of the hierarchical species interaction matrix
shown in Fig 1. The left and right sets of singular vectors U,V isolate groups of species that are functionally redundant, while the diagonal elements 𝜎i in the
singular value matrix Σ encode the hierarchy of timescales that emerge due to functional redundancy.

https://doi.org/10.1371/journal.pcbi.1013051.g004
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W∈ℝN×K that projects the dynamics into a K≤N dimensions. Recent results for low-rank
systems show that the particular projection W = V̂⊤ minimizes the least-squares alignment
error between the vector field of a high-dimensional system and its K-dimensional reduced-
order projection. The columns of V̂ contain the first K right singular vectors V in the singular
value decomposition of A [39]. Because the matrix A has N right singular vectors, we choose
two projections Wfast =V∶,1∶K ∈ℝN×K and Wslow =V∶,(N–K+1)∶N ∈ℝN×K, and apply them to an
ill-conditioned ecosystem’s trajectory in Fig 3C.

We find that projection onto the ecomodes (Wfastn(t) and Wslown(t)) separates fast
timescales for relaxation onto the slow manifold network, and slow (∼ 𝜅) timescales associ-
ated with navigating these modes (Fig 3C). In numerical optimization theory, ill-conditioning
is mitigated by finding a preconditioning transformation –WAn =Wr such that 𝜅(WA)≪
𝜅(A). For our system, we observe that both Wfast and Wslow effectively precondition the
dynamics, with 𝜅(WfastA)/𝜅(A) < 10–4 and 𝜅(WslowA)/𝜅(A) < 10–5. In general, the condition
number 𝜅(A)may always be expressed as a ratio of the extremal singular values of A,

𝜅(A) = 𝜎max(A)/𝜎min(A) (4)

implying that the condition number essentially measures timescale separation in Eq 1. Apply-
ing dimensionality reduction to the dynamics of a complex ecosystem therefore precondi-
tions by isolating singular values associated with fast and slow dynamics. Preconditioning
is known to isolate fast and slow subspaces in iterative linear solvers [34], and our findings
connect this phenomenon to the empirical success of ecomode analysis in describing high-
dimensional foodwebs, especially microbial ecosystems [17,25,36]. When A is symmetric,
our preconditioning argument supports prior works that construct ecomodes using eigen-
vectors of the interaction matrix [17]. These works also find slow manifolds associated with
degenerate eigenvalues, which identify substitutable species and thus the rank (effective size)
of the ecosystem [17]. However, because the eigenvectors of a non-symmetric matrix have no
general relationship with the right singular vectors, the projection V⊤ should be preferred for
systems with non-reciprocal (e.g. predator-prey or consumer-resource) interactions.

Transient chaos slows approach to equilibrium
Random ill-conditioned ecosystems are harder to solve due to the need to navigate a network
of slow manifolds, suggesting that such systems pose more computationally-demanding opti-
mization problems. But where is this excess computation allocated? The physical Church-
Turing thesis asserts that continuous simulation of a hard combinatorial optimization prob-
lem likely incurs exponential cost [41]. Recent continuous formulations of discrete con-
straint satisfiability problems show that hard problem instances exhibit transient chaos, which
manifests as exponentially-increasing sensitivity (and thus required precision) and fractal
basin boundaries across initial conditions [42]. For our system, we surmise that the slow
manifolds act analogously to constraints, producing an irregular landscape of slow barriers
that temporarily scatter trajectories as they approach the global fixed point, a mechanism
reminiscent of a pachinko game (Fig 5A). To investigate this effect, we compute the fast
Lyapunov indicator (𝜆F), a quantity originally developed by astrophysicists to quantify the
stability of planetary orbits in high dimensions [43]. For each trajectory x(t) of Eq 1, we
integrate the variational equation ẇ(t) = J[x(t)]w(t), where w(0) = I∈ℝN×N. The quantity
𝜆F =maxt log ∥w(t)∥2 represents the maximum chaoticity encountered on a trajectory, a
quantity more informative than traditional Lyapunov exponents for transient dynamics
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Fig 5. Transient chaos due to slow manifold scattering. (A) The ”pachinko” mechanism for ill-conditioned dynam-
ics, in which slow manifolds temporarily disperse neighboring trajectories that later reunite at the global equilibrium.
(B) Caustics in the Fast Lyapunov Indicator (𝜆F) versus initial conditions on a two-dimensional slice through the
N-dimensional space of initial species densities.

https://doi.org/10.1371/journal.pcbi.1013051.g005

where limt→∞ log ∥w(t)∥2/t≤ 0. We note that the dynamics ẇ(t) represent a continuous-time
variant of the power method, a standard iterative technique for finding the largest eigenval-
ues of square matrices [34]. We therefore interpret 𝜆F as a spatially-resolved probe of the local
conditioning of A for a given initialization n(0).

A random two-dimensional slice through the space of initial species densities reveals intri-
cate pseudobasins, indicating abrupt changes in the route by which the ecosystem approaches
equilibrium when initial species densities change by small amounts (Fig 5B). These patterns
resemble optical caustics, which arise when density fluctuations in a transparent medium dis-
tort the pathlengths of light rays. Here, the slow manifolds play a similar role by intermittently
trapping and scattering trajectories arising from different initial conditions. This slow-mode
mechanism differs from the scrambling induced by chaotic saddles in high-dimensional open
chaotic systems like planetary orbits [43,44], in which conservation of mechanical energy pre-
cludes approach to a fixed point. Rather, we find that Eq 1 exhibits doubly-transient chaos, a
recently-characterized phenomenon in dissipative systems that approach global fixed points
by differing routes [45]. Although a globally-stable community will ultimately approach the
same equilibrium regardless of its assembly route or initial species densities, transient chaos
introduces contingency because minute fluctuations cause the time to reach equilibrium to
vary by three orders of magnitude.

Selection for diversity creates ill-conditioned ecosystems
We next consider whether ill-conditioned dynamics can occur in real ecosystems, which typ-
ically have more structured interaction networks than Eq 3. Using a genetic algorithm, we
evolve random foodwebs by selecting for an increased number of surviving species at steady-
state, Ncoex, a measure of diversity in May’s original work [1]. In our procedure, we start by
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randomly sampling 103 distinct well-conditioned random foodwebs (P = I in Eq 3), and then
simulate their dynamics until they reach equilibrium n∗. We then select the 10% of foodwebs
with the highest diversity Ncoex ≡ ∥n∗∥0. We propagate these foodwebs to the next generation,
and cull the remaining 90% and replace them with new foodwebs assembled from random
blocks of row-column pairs sampled from the surviving 10%. We repeat this procedure for 103

generations.
We find that evolving foodwebs towards higher diversity Ncoex robustly produces higher-𝜅

ecosystems, independently of modelling choices like foodweb scale or mutation and crossover
rates (Fig 6A). The robust emergence of ill-conditioning implies that an intrinsic physical
tradeoff, rather than a dynamical effect, produces the observed scaling. Intuitively, as the
diversity Ncoex increases, fewer positivity constraints in Eq 1 remain active at equilibrium,
and so the system becomes more linear. Additional coexisting species increases the probabil-
ity that a subset serve a substitutable role, leading to a higher condition number. This effect
occurs in experimental microbial ecosystems, in which substitutable consortia of closely-
related species emerge at high diversities [46,47]. To measure this effect, we introduce a
restricted condition number ̂𝜅 describing the minor matrix comprising only the columns of A
associated with nonzero entries in n∗. Principal minors of a positive definite matrix remain
positive definite, and so the reduced system retains a global fixed point, corresponding to a
noninvasible equilibrium of the reduced ecosystem containing only the species that survive
at equilibrium. Computing ̂𝜅 for random ecosystems with varying Ncoex confirms a general
relationship (Fig 6B), which closely follows a known scaling law for the condition number of
a random rectangular matrix, ̂𝜅 = 9.563N/(N –Ncoex + 1) (dashed line) [48]. This suggests that
ill-conditioning arises primarily from selection for diversity, and not fine-tuned interaction
values. Physically, this effect represents species packing: adding new species to an ecosystem
increases the probability of duplicating an existing function. From an optimization stand-
point, there are two competing effects: as Ncoex increases, fewer non-negativity constraints
remain active, but the probability that two species are redundant increases. This interplay is
known as complementary slackness in constrained optimization [34]. Consistent with this

Fig 6. Selection for diversity produces ill-conditioning. (A) The condition number 𝜅 versus generation for 103

replicate random ecosystems of N = 103 species evolved to have high steady-state diversity, defined as the number
of coexisting species at equilibrium. (B) The restricted condition number ̂𝜅 of the interaction matrix of species that
survive at steady-state, versus the overall steady-state diversity. Dashed line indicates expected condition number for
a random N ×Ncoex matrix with normally-distributed elements.

https://doi.org/10.1371/journal.pcbi.1013051.g006
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interpretation, recent works map consumer-resource models (which generalize Eq 1) onto
quadratic optimization programs [16] and constraint satisfaction problems [21], and find that
niche overlap may be understood as redundancy emerging at high constraint loads. To con-
firm this connection, in the Appendix we repeat our analysis for a previously-studied variant
of Eq 1 that exhibits a controllable transition from multistability to global noninvasible sta-
bility [31–33]. We observe a rapid increase in the conditioning 𝜅(A) near the critical point,
as well as transient chaos. Taken together, these results suggest that, under generic selection
for high steady-state diversity, ecosystems will exhibit ill-conditioning because functional
redundancy becomes inevitable. Recent works describe species packing in crowded envi-
ronments like the microbiome [24,46], and our work shows that such systems likely exhibit
long transients and wide variation in the timescales over which different subcommunities
equilibrate.

Perturbations experimentally probe the slow manifold
We next consider the detection of ill-conditioned dynamics in experimental settings. Testing
our results for scaling laws and pseudobasins requires the ability to perform many replicate
experiments with slight variations in initial conditions or parameter values, which is imprac-
tical at the current scale and precision of microbial ecosystem experiments [27]. Moreover,
it is difficult to fit an analytic model like Eq 1 directly to experimental data, which requires
resolving ∼O(N2) interaction parameters in a model of the form Eq 1.

However, we note that our framework is based on singular perturbation theory in
numerical analysis. We therefore look to these methods for potential routes for measuring the
conditioning 𝜅 in real-world ecosystems, without the need to directly measure A in Eq 1. In
numerical analysis, Krylov algorithms probe the properties of large matrices without directly
materializing them [34]. Two common approaches, power and inverse iteration, respectively
estimate the largest and smallest eigenvalues of a large matrix A by repeatedly applying a lin-
ear transformation derived from A to a random vector. Because the condition number may be
alternatively formulated as a ratio of singular values (Eq 4), we anticipate that, within a large
ecological network, the properties of A may be probed by applying a multifactorial “pulse”
perturbation, in which multiple species are temporarily and simultaneously perturbed [49,
50]. In the non-invasible case, the ecosystem relaxes back to the global equilibrium n∗, but the
directions of fastest and slowest return to equilibrium will reveal the effective conditioning 𝜅.

In Fig 7, we apply 100 random perturbations to an ecosystem of the form Eq 1 that is ini-
tialized at its global steady state n∗. Each perturbation corresponds to a random Gaussian
vector of small amplitude 𝛿n∼N (0, 10–3), though we set to zero any elements of the per-
turbation vector corresponding to species that are excluded at steady-state. The resulting
dynamics always equilibrate back to steady state, but take widely-varying routes depending on
the particular alignment of the random perturbation with slow manifolds of the underlying
system.

We visualize the N = 200-dimensional dynamics by projecting the trajectories onto the
fastest and slowest modes, n(t) ⋅ w(N)/∥w(N)∥ and n(t) ⋅ w(1)/∥w(1)∥. These two directions
correspond to the first and last right singular vectors of the interaction matrix A. While the
interaction matrix A is not directly measurable in real-world ecosystems, the extremal sin-
gular vectors correspond to principal components (or ecomodes) derived from trajectory
time series [36]. In this projected basis, we observe that the dynamics quickly traverse the fast
manifold by widely-varying routes, and then slowly approach the global equilibrium n∗ along
the slow manifold.
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Fig 7. Community response to perturbations reveals the slow manifold. (A) A set of 100 experiments in which a
random pulse perturbation is applied to an equilibrated ecosystem, and the dynamics are allowed to return to steady
state. The full N = 200 dimensional dynamics are projected onto the fastest and slowest directions associated with
the singular vectors of the interaction matrix A. The slow manifold (blue points) is numerically detected by repeating
the experiment with 𝜖 = 0 in Eq 1. (B) The Pearson correlation (inner product) between the velocity vector of the
dynamics at each timepoint, and the fast and slow manifolds. Error bars represent standard errors over 100 replicate
communities.

https://doi.org/10.1371/journal.pcbi.1013051.g007

However, our ensemble-based analysis is impractical in a strongly data-limited setting,
such as a field experiment, in which only a single “pulse” perturbation occurs (such as a
weather event or habitat change). We therefore construct a proxy for the slow and fast man-
ifolds from a single time series (Fig 7B). Given a single time series, we estimate the velocity
vector using finite differences. At long timescales after the pulse perturbation ends, this veloc-
ity vector becomes aligned (exhibits high Pearson correlation) with the direction of the slow
manifold, consistent with emergent low-dimensionality in the observed dynamics. This direc-
tion remains consistent across different random perturbations, underscoring that the geom-
etry of the slow manifold determines equilibration. We thus find that slow, ill-conditioned
dynamics associated with functional redundancy will produce a characteristic signature in an
ecosystem’s response to perturbations, even when an underlying model is unavailable.

Conclusion
Drawing on recent work in transient chaos and optimization theory, we have shown that
equilibration of random ecosystems is globally constrained by ill-conditioning. Our work
generalizes the classic stability vs. complexity dichotomy in mathematical biology [1],
by demonstrating how transients complicate approach to equilibrium. Physically, ill-
conditioning corresponds to a case where in-group dynamics (e.g. competition among sim-
ilar nitrogen-fixing species in a microbial mat) unfold over a slower timescale than inter-
group competition, like community assembly from different niches [51,52]. This manifests
as ultra-long transient dynamics, with durations that can vary by orders of magnitude given
minor changes in the assembly sequence or initial species densities. Extended transients pro-
vide opportunities for noise, seasonal changes, climate variation, and other exogenous fac-
tors to disrupt or re-route the dynamics [15]. Moreover, transient chaos implies that even an
ecosystem that has successfully reached equilibrium is vulnerable to disruption, because tran-
siently chaotic systems can undergo extended excursions away from equilibrium, if subjected
to perturbations exceeding a finite threshold [2,49]. Our results thus highlight that classical
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equilibrium-based analysis methods fail to fully characterize high-dimensional ecosystems,
for which steady-state is an exception, not the rule.

We expect that our methods have relevance to other high-dimensional biological networks:
the perfectly-substitutable case (𝜖→ 0) implies that A has N–M repeated eigenvalues, a sce-
nario equivalent to zero modes that arise in elastic models of allostery in biomolecules [53],
as well as epistasis in genetic models [54]. Additionally, in statistical learning theory, high-
dimensional optimization landscapes have been found to exhibit linear mode connectivity, in
which networks of zero-barrier connections bridge between optima [55], a concept extend-
ing earlier works describing symmetry-induced submanifolds that influence the dynamics
of learning [56]. These diverse systems all represent cases in which small perturbations may
disrupt an intricate network of solutions, leading to slow, multiscale dynamics.

While our analysis largely relies on the particular form of Eq 1 as an analogue constrained
linear regression, we emphasize that 𝜅 physically represents the functional redundancy, and
thus the computational cost to solve a linear system. Generalizations of Eq 1 instead sample A
from more structured probability distributions, in order to account for phenomena like niche
competition or predation hierarchies [12,51,57]. Other approaches use different dynamical
equations, including stochastic models and empirical models learned directly from experi-
mental data [16,58,59]. Because all such models approach equilibrium, we expect that many
of our observations are robust to the particular form of Eq 1. This is because, in optimization
theory, a generalized condition number exists for any constrained problem in terms of the
distance to singularity within the feasible solution set [60]. For example, in random Boolean
satisfiability problems, the effective conditioning is governed by the ratio of constraints to
variables [42]. While direct calculation of the generalized condition number is prohibitive for
many problem classes, its existence suggests that global computational constraints on equi-
libration exist for more complicated foodweb models, or other types of biological networks.
Our work thus provides a tractable example of how intrinsic computational complexity may
influence the organization of biological systems.

Table of symbols
We summarize all variables and their meanings in Table 1.

Appendix
Slow modes in the generalized Lotka-Volterra model
The generalized Lotka-Volterra model has the form

ṅi(t) = ni(t)
⎛
⎝
ri +

N
∑
j=1

Aijnj(t)
⎞
⎠
. (5)

The growth rates ri ∼N (0, 1) include species capable of growing in isolation (ri > 0, such
as autotrophs) and those that require other species to survive ri < 0. The matrix A is sampled
from the family of matrices

A = PT(A(0) – d I)P + 𝜖 E, (6)

where A(0)ij ,Eij ∼N (0, 1), 𝜖 ≪ 1, d is a density-limitation constant, and I is the identity
matrix. We introduce the notation A =A(0) + 𝜖 E, where A(0) ≡ PT(A(0) – d I)P. We linearize
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Table 1. Mathematical symbols and their descriptions.
Symbol Description
N The number of species.
M The number of functional trophic groups, M≤N
𝜖 The scale of intraspecific variation within functional groups, equivalent to the amplitude of the

singular perturbation.
A The N ×N matrix of interactions among all species.
P The assignment matrix describing functional redundancies among groups, such as trophic levels.
A(0) The random initial matrix of interactions among species, before functional redundancies are included.
ri The growth rate in isolation of the ith species
E The random matrix encoding minor variations among functionally redundant groups.
𝜅 The condition number of the interaction matrix, which determines the ratio of the largest to the

smallest relevant timescales in a community.
̂𝜅 The restricted condition number, corresponding to the condition number of the reduced matrix of

interactions among only the species that survive at equilibrium.
ni(t) The instantaneous density of the ith species at a given time t
n∗i The densities of the ith species after the ecosystem reaches steady-state
𝜏 The equilibration time that it takes the ecosystem to reach steady-state
Ncoex The number of surviving (coexisting) species at steady-state, Ncoex ≤N
d The intraspecific density limitation
𝜌 The connectance, or the number of all interactions in the ecosystem divided by the total number of

possible interactions
𝛼 The Morse instability index, indicating the relative rate of escape from a saddle point
𝛿ni(t) The instantaneous difference between the density of the ith species, and its value at steady-state
𝜎i(A) The ith singular value of the matrix A, ranked in descending order of magnitude
𝜆F The fast Lyapunov indicator, a measure of the relative sensitivity of the route to equilibrium associated

with a given set of species densities

https://doi.org/10.1371/journal.pcbi.1013051.t001

Eq 5 around a slow manifold n∗, such that n(t) = n∗ + 𝛿n(t) and –A(0)n∗ = r. Matching terms
of equivalent order results in linearized dynamics

̇𝛿ni(t) = n∗i
N
∑
j=1

A(0)ij 𝛿nj(t) + 𝜖 n∗i
N
∑
j=1

Eij n∗j (7)

where we have discarded terms ∼O(𝛿ni𝛿nj) and ∼O(𝜖𝛿ni). We note that retaining the lat-
ter terms would lead to perturbations ∼O(𝜖) to the eigenvalues of the unperturbed Jacobian;
however, in the globally-stable regime, the dynamics near the equilibrium point are domi-
nated by the density-dependent term d, and so these cross-terms have minor effects on the
global fixed point.

The first term in Eq 7 creates linearized dynamics described by the unperturbed Jacobian
matrix (community matrix) [49]. The unperturbed Jacobian matrix may be alternatively writ-
ten as the matrix product A diag(n∗), which is independent of 𝜖. The second term biases the
dynamics away from the unperturbed fixed point n∗, creating a flow with speed ∼𝜖 along the
slow manifolds.

Numerical integration
All numerical results are generated with an implicit embedded Runge-Kutta solver (Radau)
that inverts the analytic Jacobian at each timestep. Relative and absolute tolerances of the
solver are set to <10–12, ensuring accuracy comparable to recent studies of transient chaos
[45,61].

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013051 May 5, 2025 15/ 24

https://doi.org/10.1371/journal.pcbi.1013051.t001
https://doi.org/10.1371/journal.pcbi.1013051


ID: pcbi.1013051 — 2025/5/8 — page 16 — #16

PLOS COMPUTATIONAL BIOLOGY Optimization hardness constrains ecological transients

For calculation of the settling time, we numerically integrate until ṅ(t) < 10–14, and
we then use the eigenvalues of analytical Jacobian of Eq 5 to confirm that the asymp-
totic value is a local minimum, which we consider an estimate of the global solution n∗.
We then use a nonnegative least-squares solver (the Lawson-Hanson algorithm imple-
mented in scipy.optimize.nnls) to directly verify that –An∗ = r. We then retroac-
tively find the settling time 𝜏 by choosing the fixed convergence floor 𝜉 = 10–7 and find
𝜏 ≡ inft(∥n(t)–n∗∥2 ≤ 𝜉). The precision floors are chosen so that, in all cases, 𝜏 occurs before
the termination of integration.

Calculation of the fast Lyapunov indicator
For calculation of the Fast Lyapunov Indicator (FLI), the variational equation ẇ(t) =
J[n(t)]w(t), w(0) = I is introduced based on the analytic Jacobian of Eq 5. The variational
equation is integrated concurrently with the original trajectory, with all timesteps controlled
by the dynamics of n(t). During integration, whenever ∥w(t)∥2 grows too large for numeri-
cal stability, we rescale all matrix elements and then store the scale factor, allowing the exact
value of ∥w(t)∥2 to be reconstructed post hoc. For a given initial condition n(0), the Fast
Lyapunov Indicator is given by

𝜆F =max
t

log ∥w(t)∥2

where the w(t)∈ℝN×N and w(0) = I [62]. The variational equation may be interpreted as
evolving each column of w(t) separately. Because each column points in a different initial
direction, the columns stretch at different rates depending on whether they happen to initially
align with the dominant stretching directions of J(n(t)). At long times, the fastest-growing
column dominates the matrix norm. 𝜆F may thus be interpreted as the fastest exponential
divergence observed at any time, and along any initial direction, for a given point n(0) in the
domain of a dynamical system. This property contrasts 𝜆F with the true Lyapunov exponent
limt→∞ log ∥w(t′)∥/t, which eventually approaches zero or a negative value for most initial
conditions in systems that exhibit scattering or a global fixed point. Prior works have shown
that 𝜆F can robustly detect transient events unfolding over a range of timescales, including
short-period scrambling events in the restricted three-body problem [63], long-timescale res-
onances in the solar system [64,65], and gradual diffusion in quasi-integrable Hamiltonian
systems [43].

Embedding the slow manifold dynamics
We fix the parameters of an ecosystem Eq 5, with F(n;A, r) denoting the right hand side of
the differential equation. We compute a set of Ntraj simulations originating from different ini-
tial conditions and sampled at T discrete timepoints, Xtraj ≡ {n(k)(t)}∈ℝNtraj×T×N. On this
set of trajectories, we perform principal components analysis (PCA) and transform the data
into the full principal components space Ypca ∈ℝNtraj×T×N. For visualization purposes, we
truncate this matrix in order to view the trajectories along only the top two principal com-
ponents, Ŷpca ∈ℝNtraj×T×2. For each initial condition, we perform a replicate integration with
𝜖 = 0 in order to identify the set of fixed points for the degenerate case, X(0)∗traj ∈ℝNtraj×N. We
project these unperturbed solutions into the truncated PCA coordinates, in order to visualize
in low dimensions the locations of formerly-stable solutions, Ŷ(0)∗pca ∈ℝNtraj×2.

To obtain a vector field and streamlines, we define a uniform mesh over the first two PCA
embedding coordinates Ŷmesh ∈ℝNmesh×2, which we then promote to a full-dimensional mesh
by appending the mean of the remaining (N–2) PCA coordinates, producing the coordinates
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Ymesh ∈ℝNmesh×N. We then invert the PCA transformation (a linear transformation and a
shift by the featurewise mean vector) in order to pull Ymesh back into the ambient coordinates
Xmesh ∈ℝNmesh×N. In the inverted mesh coordinates, we evaluate Eq 5 at each mesh location
to produce a velocity vector field U = F(Xmesh;A, r)∈ℝNmesh×N×N in the ambient coordinates,
which we then project back into the truncated PCA basis V̂∈ℝNmesh×2×2 in order to visual-
ize the vector field and streamlines along the slow manifold. Trajectories in the embedded
coordinates appear to cross streamlines, because the observed dynamics are a projection of
higher-dimensional trajectories from a velocity field V∈ℝNmesh×N×N, where streamlines do
not cross.

Evolutionary simulations lead to ill-conditioned dynamics
We randomly sample 103 random interaction matrices with P = I, 𝜖 = 0 in Eq 6. We inte-
grate their dynamics under Eq 5, using the same integration precision and termination
conditions described in 1. Consistent with prior results [23], we observe that the initial
steady-state diversity, Ncoex ≡ ∥n∗∥0, exhibits a binomial distribution across replicates, with
⟨Ncoex⟩A ≈ N/2.

We next select the top 10% of foodwebs (A matrices) to survive to the next generation,
and we delete the remaining 90%. We replace these culled foodwebs with new foodwebs with
interactions randomly sampled from the surviving foodwebs. However, we hold constant the
vector r of growth rates for each species. This is because the individual growth rates are the
only distinguishing characteristic that would allow for distinct niches among the different
species; if growth rates also evolve during the simulation, the system will trivially collapse
onto a degenerate space of identical species in equal proportions. This case would be consis-
tent with our observation that functional redundancy (and thus ill-conditioning) emerges at
high diversity, but it otherwise provides little mechanistic insight.

We have also considered variants of our evolutionary procedure, including the addition of
random mutations, constraints on crossover due to clamped values of the sparsity and norm
of each A, and a more gradual recombination procedure, in which low-fitness ecosystems are
not culled, but rather only partially updated based on interactions found in high-diversity
ecosystems. While these hyperparameters affect evolution rate and convergence time, they
have no effect on the scalings and tradeoffs we observe, suggesting that the phenomenon rep-
resents an intrinsic property of the space of ecosystems and A matrices, rather than an artifact
of our particular matrix sampling procedure.

From a biological perspective, our approach represents a limiting case of eco-evolutionary
dynamics, in which population dynamics proceed rapidly compared to evolutionary dynam-
ics. Interestingly, while the population dynamics represent an optimization in the sense of
solving a non-negative least-squares problem, the process of evolving the A matrices with
genetic algorithms represent a higher-level meta-optimization,

maximize
A

∥n∗∥0

subject to –An∗ = r,
n∗i ≥ 0, ∀i.

where the population dynamics are now encoded within an equality constraint.
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Alternative models
In our formulation of the generalized Lotka-Volterra model Eq 5, the role of the condition
number 𝜅 on the interaction matrix A is explicitly encoded in the parameter 𝜖 ∼ 𝜅–1 via the
structured interaction matrix Eq 6. Several recent studies instead parametrize A in terms of a
random ensemble of scaled interactions,

A = –𝕀 – 𝜇
N
1 –

𝜎√
N
A′ (8)

where 𝕀 ∈ ℝN×N denotes the identity matrix, 1∈ℝN×N denotes a matrix of all ones, and the
elements of A′ ∈ℝN×N are randomly sampled from a bivariate Gaussian distribution of the
form

⟨A′
ijA

′
kℓ⟩ = 𝛿ik𝛿jℓ + 𝛾𝛿iℓ𝛿jk

so that ⟨A′2
ij ⟩ = 1 and ⟨A′

ijA′
ji⟩ = 𝛾.

Analytical and numerical studies show that Eq 8 exhibits a threshold 𝜎c ≡
√

2/(1 + 𝛾) at
which the system transitions from exhibiting multiple stable equilibria to a single, globally
stable fixed point [31–33]. We apply our analysis from the main text to this system. We sim-
ulate a random ensemble of ecosystems and find that, near the transition point between global
stability and multistability, the condition number 𝜅(A) rapidly increases and produces long-
transients associated with ill-conditioned dynamics (Fig 8A). In this intermediate regime,
the system exhibits the same phenomena we report in our main results, including scaling of
equilibration (i.e. solving) time with the condition number (Fig 8B), and the appearance of
caustics and transient chaos associated with differing routes to equilibrium (Fig 8C).

Effect of network connectivity on dynamics
We repeat our scaling experiments for different values of the connectance 𝜌, corresponding
to the total number of connections among nodes C divided by the total possible connections
N(N – 1)/2. In Fig 9, we find that the observed scaling of transient lifetime with condition
number does not vary with connectance over two orders of magnitude. In Fig 10, we find that

Fig 8. Complex transients in an alternative ecosystemmodel. (A) The condition number as an ecosystem model transitions from noninvasible global sta-
bility to multistability. Settling time 𝜏 versus condition number 𝜅 for 104 random communities. (B) Caustics in the Fast Lyapunov Indicator (𝜆F) versus initial
conditions on a two-dimensional slice through the N-dimensional space of initial species densities.

https://doi.org/10.1371/journal.pcbi.1013051.g008
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Fig 9. The effect of network connectivity on scaling of transient dynamics. Settling time 𝜏 versus condition num-
ber 𝜅 for 3 × 103 random communities; dashed line shows the scaling expected for an iterative linear program solver.
Colors indicate communities with different values of the connectance (𝜌).

https://doi.org/10.1371/journal.pcbi.1013051.g009

Fig 10. The effect of network connectivity on transient dynamics. Caustics in the Fast Lyapunov Indicator (𝜆F) versus initial conditions on a two-dimensional
slice through the N-dimensional space of initial species densities. Panels correspond to three levels of network connectance (𝜌).

https://doi.org/10.1371/journal.pcbi.1013051.g010

the pseudobasins associated with transient dynamics change in structure, but not intensity, as
the connectance varies.

Effect of slow manifold dimension on dynamics
We repeat our experiments by varying the relative dimensionality of the slow manifold, corre-
sponding to M/N. In Fig 11, we find that the observed scaling of transient lifetime with con-
dition number does not vary with connectance over two orders of magnitude. However, in
Fig 12, we find that the pseudobasins associated with transient dynamics change in structure
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Fig 11. The effect of slow manifold dimension on scaling of transient dynamics. Settling time 𝜏 versus condition
number 𝜅 for 3 × 103 random communities; dashed line shows the scaling expected for an iterative linear program
solver. Colors indicate communities with different slow manifold dimensionalities (M/N).

https://doi.org/10.1371/journal.pcbi.1013051.g011

Fig 12. The effect of slow manifold dimension on transient dynamics. Caustics in the Fast Lyapunov Indicator (𝜆F) versus initial conditions on a two-
dimensional slice through the N-dimensional space of initial species densities. Panels correspond to three values of the slow manifold dimension (M/N).

https://doi.org/10.1371/journal.pcbi.1013051.g012

and intensity. In general, as the slow manifold becomes a larger dimensional slice through
phase space, more routes trap trajectories along the slow manifold, leading to sharper caustics
in the fast Lyapunov indicator 𝜆F.
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