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Abstract

Modern generative machine learning models are able to create realistic 
outputs far beyond their training data, such as photorealistic artwork, 
accurate protein structures or conversational text. These successes 
suggest that generative models learn to effectively parametrize and 
sample arbitrarily complex distributions. Beginning half a century 
ago, foundational works in nonlinear dynamics used tools from 
information theory for a similar purpose, namely, to infer properties 
of chaotic attractors from real-world time series. This Perspective 
article aims to connect these classical works to emerging themes in 
large-scale generative statistical learning. It focuses specifically on two 
classical problems: reconstructing dynamical manifolds given partial 
measurements, which parallels modern latent variable methods, and 
inferring minimal dynamical motifs underlying complicated data sets, 
which mirrors interpretability probes for trained models.
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A simplified such scheme (Fig. 1b) centres a Gaussian proposal distribu-
tion around the current sample, ~ ( , )i i+1 Σx xN , with the covariance 
matrix Σ aligned with the local geometry of distribution as estimated 
from gradient information or previous samples. A sample drawn from 
this proposal distribution provides an amount of local information 
given by

H ∑= ln(2πe) + lnσ , (1)N

i

N

i
/2

=1

in which σi denotes the standard deviation of the N-dimensional distri-
bution along its ith principal axis. Similar to Pesin’s formula, this expres-
sion relates novelty in the form of information gain to local geometric 
properties of the underlying manifold. Just as chaotic systems diverge 
along unstable manifolds associated with positive Lyapunov exponents, 
complex data distributions contain may flatter local directions that 
dominate their apparent diversity16,17.

Consistent with this connection between dynamics and sam-
pling, many large-scale generative models implement sampling 
schemes that may be viewed as dynamical systems mapping input 
variables x to latent variables z18,19. When these models are applied to 
dynamical data sets, latent representations reveal physical properties 
such as attractors and invariants, enabling recent scientific applica-
tions of generative models to spiking neurons20,21 and turbulent flow 
 time series22.

These applications therefore motivate revisiting it from bit and 
situating emerging work on statistical learning within classical works 
on information processing in chaotic systems. Chaos and statistics 
have well-established connections through ergodic theory2,14,23, which 
stimulated the development of early statistical methods for identifying 
the dynamical systems that act as generators for experimental time 
series10,24,25. Although several reviews highlight work at the intersection 
of data-driven modelling and dynamical systems26–31, this Perspective 
article has two specific focuses: how to represent systems given partial 
measurements and how discretization can reveal minimal dynamical 
generators of complex processes. We first consider classical attractor 
reconstruction, which mirrors constraints on latent representations 
learned by state-space models of time series. We then revisit early 
efforts to use symbolic approximations to compare minimal discrete 
generators underlying complex processes, a problem relevant to 
modern efforts to distil and interpret black-box statistical models. 
Emerging interdisciplinary works bridge nonlinear dynamics and 
learning theory, such as operator-theoretic methods for complex 
fluid flows, or detection of broken detailed balance in biological 
data sets. We conclude by discussing how future machine learn-
ing techniques may revisit other classical concepts from nonlinear 
dynamics, such as transinformation decay and complexity–entropy  
tradeoffs.

Representing and propagating chaotic dynamics
Large statistical learning models often parametrize complex data sets 
in low-dimensional latent spaces. For example, artificial image gen-
erators aim to invertibly map the space of natural images to a latent 
probability distribution19. The empirical success of such approaches 
is termed the manifold hypothesis: that high-dimensional data sets 
typically cluster near low-dimensional manifolds32,33. In the context 
of time series, successful data-driven re-parametrization implies 
that the dynamics arise from a low-dimensional attractor embed-
ded within the higher-dimensional ambient space of the data. In this 

Introduction
The fractal geometry of a strange attractor can only be visualized by 
watching a chaotic system evolve for an extended duration. Chaotic 
systems therefore continuously produce information, which gradually 
reveals their structure at ever-decreasing scales1–3. The notion of 
information production by chaotic systems inspired early efforts to 
frame computation as a physical theory, including Richard Feynman’s 
estimation of the information stored in an ideal gas4 and John Archibald 
Wheeler’s analogies between travelling salesman algorithms and mole
cular chaos5. Wheeler would later declare ‘it from bit’ — that physical 
theories ultimately encode computational primitives6.

Contemporaneous to Wheeler’s remark, work by the dynamical 
systems community formalized information production by cha-
otic systems7–11. Continuous-time chaotic systems encountered in the 
natural world, from turbulent fluid cascades to intertwined stellar 
orbits, act as analogue computers that manipulate and transform 
information encoded in their initial conditions and parameters3,12,13. 
Given a chaotic dynamical system x f xt t td ( )/d = ( ( )), Pesin’s formula 
states that its entropy production rate is proportional to the sum of its 
positive Lyapunov exponents12 (Fig. 1a), which measure the rate at 
which nearby trajectories diverge along different directions on a 
chaotic attractor:

H ∑ λ= .
λ

i
>0i

The entropy H represents the Kolmogorov–Sinai entropy, which can 
be estimated by coarse-graining the phase space of the system with 
infinitesimal bins and then calculating the probability of the system 
occupying each bin over an extended period14. Pesin’s formula thus 
relates properties of the dynamics to the rate of information production 
of the system f(x); systems with greater chaoticity reveal more quickly 
the points on their attractor (Fig. 1a). The formula therefore connects 
dynamics, attractor geometry and information in the evolution of 
chaotic systems.

Ongoing developments in statistical learning motivate revisiting 
older results on information production by chaotic systems. Many 
machine learning algorithms implicitly estimate the underlying distri-
bution of possible input values p(x) based on a finite number of inputs 
x seen during training15; the information gained in the sampling process 
is related to the geometry of the underlying distribution. Supervised 
learning algorithms seek to construct the conditional probability 
distribution p(y∣x) of a target state y given knowledge of an input x. 
In image classification, y comprises a discrete label for an image x; in 
forecasting, y represents the future system state conditioned on the 
past observations x. By contrast, unsupervised learning constructs a 
map between the estimated p(x) and a latent space p(z∣x) in which 
underlying patterns in the data become apparent. Generative models, 
such as generative adversarial networks or variational autoencoders, 
seek to sample p(x) to produce new examples ′x  resembling training 
data cases. These methods either directly sample a smooth estimate 
of p(x) constructed from the training data, or instead sample the 
latent space zp( ′) and then decode the result through the inverse 
transformation p( ′ ′)x z  (ref. 15).

However, because generative models are frequently used in appli-
cations in which x is high dimensional, drawing representative samples 
from p(x) often proves difficult owing to the curse of dimensionality, 
leading to a high sample rejection rate. Methods suitable for 
high-dimensional distributions such as Markov chain Monte Carlo 
select the next sample xi+1 based on the previous accepted sample xi. 
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case, the apparent complexity of a measured time series is a matter of 
representation — complexity can be ‘transformed out’ by identifying 
and parameterizing this structure.

Historical work by the dynamical systems community sought to 
reconstruct the manifolds underlying dynamical systems based on 
limited observations. Contemporaneously to the introduction of 
Pesin’s formula, several works formulated methods for reconstructing 
dynamical attractors from partial observations34,35. In the simplest 
such approach, time-delay embedding, a given univariate measure-
ment time series x(t), is assumed to result from a non-invertible trans-
formation of an underlying multivariate dynamical system z f ztd /d = ( ) 
that lies on an attractor. Although the dynamical variables neces-
sary to span this attractor are unobserved, time-delay embedding 
constructs proxy variables using dE copies of the original measure-
ments some time τ in the past, resulting in the multivariate time 
series ̂ x t x t τ x t d τ= [ ( ), ( − ), …, ( − )]Ez . Theoretical justification for this 
approach comes from Takens’ theorem: if the number of time delays 
dE exceeds twice the manifold dimension of the underlying attractor, 
the resulting time-delay embedding will be diffeomorphic to the origi-
nal attractor34 (Box 1). The surprising aspect of Takens’ theorem stems 
from its apparent contradiction of classical observability: measure-
ments are typically non-invertible and low-rank operators, which 
discard information in their nullspace36. Takens’ theorem and its vari-
ants sidestep this issue by imposing the regularity requirement that 
the underlying dynamics lie on attractors with well-defined structure — 
an assumption that, as discussed subsequently, might be recognized 
as an inductive bias from the perspective of modern statistical learning 
algorithms. An early success of time-delay embeddings was the experi-
mental detection of a low-dimensional strange attractor as a laboratory 
flow transitions to turbulence37 — a critical prediction of the Ruelle–
Takens theory of turbulent attractors38 (Fig. 2a). Delay embeddings 
subsequently spurred early advances in model-free forecasting39–41 
and nonlinear control42.

Latent representations in time series models
Classical work on attractor reconstruction bears relevance to present-
day statistical forecasting models for time series, which can be seen 
as generative models p(xt∣xt−1, xt−2, …) that sample potential future 
states of a dynamical system conditioned on its past43,44. Popular state-
space models for forecasting treat observed data as emissions from an 
unobserved latent process, such as an underlying attractor or prob-
ability distribution45. In a simplified view, these models decompose 
time series in three phases: encoding observations into a latent space, 
propagating the dynamics and decoding them back into the measure-
ment space. These three stages are made explicit in autoencoders, 
which parametrize the encoder and decoder using separate artificial 
neural networks16. However, even generic statistical learning models 
for time series, such as recurrent neural networks and attention-based 
transformers, implicitly represent dynamics with hidden variables46. 
Different statistical time series models may therefore be compared in 
terms of how they encode and decode time series, how they propagate 
dynamics in the latent space and what constraints they apply to each 
learning stage.

The latent structure found by time series models can reveal 
dynamical properties not apparent in the original data set. Although 
attracting inertial manifolds can be shown analytically to exist for 
particular systems such as damped fluid flows47, reaction-diffusion 
systems48 or coupled oscillators49, data-driven manifold learning 
algorithms allow tools from dynamical systems to be applied even in 
the absence of explicit equations. These techniques have proven suc-
cessful for equation-free nonlinear control, bifurcation detection and 
forecasting50–52. A key theme of works in recent years involves training 
autoencoders on high-dimensional dynamical time series and analys-
ing the dynamical attractor in the latent space (Fig. 2b). One such work 
decomposes dynamical manifolds through a series of local charts 
tiling the overlapping latent spaces of several autoencoders47, an 
approach reminiscent of classical work on piecewise linear models 
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Fig. 1 | Chaos as a generative process. a, The 
natural measure μ(x) of a strange attractor, which 
arises from a deterministic chaotic system f(x(t)) 
that evolves over time t, and a schematic of the 
divergence of a set of initial conditions, governed by 
the Lyapunov exponents λ1 and λ2. b, A probability 
distribution p(x) over protein sequences learned 
by a variational autoencoder181 and a simplified 
Markov chain Monte Carlo sampling scheme. 
The distribution N  of proposed steps depends 
on the local covariance matrix Σ; σ1 and σ2 denote 
standard deviations along principal axes. Part b is 
adapted from ref. 181, CC BY 4.0.
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of chaotic attractors39. Other studies analyse local neighbourhood 
incidence to determine the intrinsic dimension of the latent space 
of autoencoders53,54, a concept related to classical neighbour-based 
methods used to calculate fractal dimensions and select the time-delay 
embedding dimensions dE (ref.  25) (Box  1). Consistent with the 
manifold hypothesis, latent spaces learned by statistical models of 
high-dimensional dynamical data sets are often contracting; for exam-
ple, autoencoders trained on videos of weakly turbulent flows can map 
the dynamics to a low-dimensional latent space associated with exact 
solutions55, consistent with inertial manifolds of the underlying partial 
differential equations. Much like delay embeddings, the dimensionality 
and model capacity necessary to identify these latent representations 
often depend on invariants of the underlying dynamics56,57.

The practical success of contemporary state-space models 
illustrates that seemingly complex dynamics may be generated by 
low-dimensional latent processes. In this sense, their motivation mir-
rors earlier efforts to explain seemingly stochastic complex time series 
in terms of deterministic chaos41,58,59. Following the development of 
time-delay embedding, early approaches to nonlinear forecasting fit 
the observed data to a dynamical model — either via analytical gov-
erning equations or via data-driven methods based on nearest neigh-
bours on the reconstructed attractor59,60. Post hoc statistical analysis 
then determined whether including nonlinearity in a fitted model 
substantially improved the forecast relative to a purely linear model, 
signalling a deterministic nonlinear component in the dynamics59. 
Just as classical statistical model selection presumes that the residuals 

Box 1

Attractor reconstruction estimates dynamical measures
Classic works in nonlinear dynamics describe ‘embedology’, that 
is, the process of inferring properties of the attractor of a dynamical 
system given only low-dimensional time series observations11. To 
emphasize connections to probabilistic machine learning, we frame 
embedology as estimating the density of attractor points in phase 
space. For dissipative chaotic systems in continuous time, this 
probability distribution often forms a fractal set, which for ergodic 
systems represents the natural measure μ(z), or the fraction of time 
that a long trajectory spends in the vicinity of a given phase space 
point z.

Given an observed time series {x1, x2, …, xT}, classical attractor 
reconstruction learns a proxy variable z associated with the 
natural measure pθ(z) ~ μ(z). In classical time-delay embedding,  
the lag operator L ≡ −[ ]τ i i τx x  lifts the system to delay coordinates 

L L Lz x x x x, [ ], [ ], , [ ]i i τ i τ i τ
d2 1E≡ … − . This reconstruction produces a 

density estimate = − ∑ −−
=
−p T d δ( ) ( ) ( )θ i

T d
iE

1
1

Ez z z  with θ = {τ, dE}, which 
can be smoothed by centring radial basis functions at each zi 
(refs. 59,183). Motivation for this approach stems from Takens’ 
embedding theorem, a consequence of the Whitney immersion 
theorem, that states that a time-delay embedding smoothly and 
invertibly deforms onto the true dynamical attractor as long as dE > 2dF, 
in which dF describes the intrinsic dimensionality of the measure 
(a non-integer for fractals)11,34,35. However, for most time series, dF and 
thus dE are unknown a priori; instead, dE and the lag τ may be treated as 
learnable parameters θ, with their values determined using heuristic 
methods. Many methods select the most informative τ based on local 
minima of an averaged pairwise similarity measure across the time 
series z z= −g τ g( ) ( , )i i τ i; although autocorrelation seems a natural 
choice, mutual information performs more strongly in practice25,183. dE 
is typically determined using topological considerations on the basis 
of neighbourhoods in embedding space. Recent works generalize 
Takens’ theorem to multivariate and non-stationary time series80,184 
and externally forced systems with skew-product structure185.

However, Takens’ theorem provides no assurance that time-delay 
embeddings preserve density, pθ(x) ≈ μ(x), a key requirement to 
accurately sample the system. Many algorithms built upon time-delay 
embeddings mitigate this issue by performing calculations based on 

nearest neighbours, rather than absolute distances in embedding 
space59,183. Motivated by the Nash embedding theorem, extensions 
of Takens’ theorem demonstrate conditions under which isometric 
embeddings can be recovered, often through additional nonlinear 
transformations or time delays — introducing a tradeoff between 
representational dimensionality and accuracy186,187. Recovery of the 
local density has also motivated practical extensions of time-delay 
embeddings based on nonlinear transformations of the lagged 
coordinates — these include principal components analysis77,79, 
kernel and diffusion map methods51,52 and artificial neural  
networks53.

Evolving a dynamical system produces correlated, not 
independent, samples from the underlying attractor, suggesting that 
the measure may be approximated by a set of trajectories rather than 
individual points. Unstable periodic orbit theory seeks to group 
the points comprising the natural measure into exact solutions of the 
underlying dynamical system, which act as a topological skeleton of 
the flow2. For dissipative chaotic systems, ∣ ∣δ( ) ( ) Λ ( )p p p

1µ z z z z∝ ∑ − − , 
in which p indexes a set of points zp that traces an unstable recurrent 
solution z(t + tp) = z(t) (refs. 188–190). Because chaotic attractors 
contain no stable points, this sum spans an infinite set of unstable 
saddles (tp → 0) and limit cycles (tp > 0). However, not all solutions 
influence the dynamics equally, and the stability multiplier Λp of a 
given solution denotes its relative instability. Dissipative, hyperbolic 
chaotic systems exhibit >Λ 1p∣ ∣  for all xp; for saddle points, the 
stability multipliers may be obtained via linear stability analysis, 
whereas cycles require averaging across the orbit. Solutions with 
values closer to one dominate the measure and thus observed 
dynamics, making them appealing targets for unsupervised learning. 
Classical methods estimate the dominant unstable periodic orbits 
directly from dynamical time series by detecting near-recurrences 
in time-delay embeddings191. Recently, advances in unsupervised 
learning and topological data analysis have yielded new methods 
for detecting unstable periodic orbits in high-dimensional time 
series192–194, prompting new applications of cycle decomposition 
to complex time series such as fluid turbulence55,195 and organismal 
behaviour196.

http://www.nature.com/natrevphys


Nature Reviews Physics | Volume 6 | March 2024 | 194–206 198

Perspective

of a fitted model should exhibit uniform scatter, equivalent tests 
for forecasting models evaluate whether the time series of forecast 
residuals exhibits no remaining autocorrelation owing to unmodelled 
deterministic dynamics61. Early methods therefore introduced the idea 
that stochasticity represents intrinsically high-dimensional dynamics 
driven from unmodelled measurement or process noise, producing 
degrees of freedom that cannot collapse onto a low-dimensional latent 
manifold.

When some previous knowledge of a nonlinear system is avail-
able, hybrid statistical learning methods directly impose constraints 
on latent dynamics to ensure consistency with known physical laws. 
For example, one approach encodes high-dimensional time series 
into a latent space where they obey analytical ordinary differential 
equations62. These equations can be constrained by restricting the 
library of possible functions present in the differential equations, 
or based on known symmetry groups63. Alternative methods such as 
neural ordinary differential equations do not require the latent differ-
ential equation to have an analytic form, only that it can be numerically 
approximated by an artificial neural network64. Some works impose 
constraints through limitations on the architecture of the learning 
model; for example, Hamiltonian neural networks directly fit differen-
tiable Hamiltonians to data, ensuring that dynamics produced by the 
learned model heed symplecticity56,65,66. When physical constraints are 
unavailable, other representational constraints can prove informative. 
In many biological data sets, such as recordings of spiking neurons, 
observed data may be assumed to originate from time-varying sto-
chastic dynamics (similar to an inhomogeneous Poisson process), 
making the inferred latent dynamics deterministic while the observed 
dynamics are stochastic20,21.

Modern time series methods therefore navigate a general dichot-
omy between directly imposing structure (such as latent symmetries, 
symplecticity and distribution families) or inferring these properties 
from the observed data. The former represents the use of inductive 
biases that shrink the space of possible trained models to reduce data 
intensivity and errors, at the expense of generalizability. This use of 
external knowledge about a physical system to tune models along 
the bias–variance tradeoff echoes classical tradeoffs in nonlinear 

time series models. Early data assimilation algorithms for chaotic time 
series, such as nonlinear extensions of the Kalman filter, directly fit 
the parameters of either known ordinary differential equations or 
their linearizations67,68. The bias–variance tradeoff in these systems 
appears as rank conditions on the resulting nonlinear fits69. This trade-
off has physical interpretation in early works that use the quality of 
data-driven models to differentiate low-dimensional chaos from noisy 
linear dynamics. These works diagnose nonlinearity by comparing lin-
ear and nonlinear models fitted on a given data set40; if a nonlinear 
model provides a better fit, then the system deviates from the expected 
behaviour of a stationary process70. These results lead to scaling laws 
relating the amount of available data, degree of nonlinearity, attractor 
dimensionality and the number of time delays required for accurate 
state-space reconstruction39,41,71. Empirical scaling laws relating data 
volume and model complexity are the focus of many recent studies 
by statistical learning practitioners72, suggesting that large generative 
models of dynamical data sets may eventually obey practical scaling 
laws backed by theoretical constraints on dynamical systems.

Lifting linearizes complex dynamics
The intuition behind time-delay embedding — that reparameterization 
of observed data provides information about unobserved variables — 
underlies emerging methods at the interface of dynamical systems 
and machine learning. Originally developed to analyse velocity field 
measurements in complex fluid flows73, dynamic mode decomposi-
tion seeks to identify the linear transformation mapping a time-delay 
embedding of a time series onto itself at a later time. For spatially 
indexed data such as fluid flows, the spectral properties of the resulting 
linear reveal spatiotemporal motifs such as oscillations, large-scale 
currents and other coherent structures29,74. Operator approaches to 
dynamical systems trace their roots to the Koopman theory of ergodic 
systems in the first half of the twentieth century75; however, they gained 
greater prominence nearly a century later, in works showing that lin-
ear propagators for complex dynamics have spectra that factor into 
isolated (nearly periodic) and continuous (chaotic) components76. 
Nonlinear dynamics often become more linear with additional 
time-delayed variables77–79 — a concept echoing earlier efforts to unravel 

R/Rc = 10.1a bR/Rc = 12.0 R/Rc = 15.2

2

Fig. 2 | Latent dynamics revisit classical attractor reconstruction. a, Time-
delay embeddings of a univariate time series representing the radial velocity of a 
flow, at three different Reynolds numbers (R) leading to turbulence at the critical 
value Rc. Poincaré sections are shown below each embedding. b, The latent space 
of an autoencoder neural network trained on weak turbulence (R = 40). The latent 

states are further embedded in 2D using t-distributed stochastic neighbour 
embedding. Shading indicates power dissipation, and connected states 
indicate equivalent flow configurations due to underlying symmetries. Part a 
reprinted with permission from ref. 37, APS. Part b reprinted with permission 
from ref. 55, APS.
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non-stationary systems by ‘overembedding’ beyond the prescription 
of Takens’ theorem80. Given a complex system such as a turbulent 
flow or spiking neuronal array, we can forgo modelling a system in terms 
of measured variables (velocity fields or individual neuron voltages) 
and instead ‘lift’ the system to a higher dimensionality than is strictly 
necessary to fully describe the dynamics. Although chaotic systems 
cannot be linearized with a finite number of lifting transformations, 
in many cases an infinite dimensional transformation exists for which a 
linear Koopman operator propagates the dynamics81. In practice, even 
finite-dimensional approximations of this operator unravel complex 
dynamical systems, by making them appear quasilinear for extended 
durations30,77.

However, given a data set without known governing equations, it is 
difficult to determine in advance the particular lifting transformations 
that best approximate the Koopman operator in finite dimensions. 
Besides time delays, potential Koopman observables include: fixed 
nonlinear transformations based on known physical symmetries (such 
as spatial Fourier coefficients)82; generic nonlinear features such as 
polynomial kernels83,84; custom transformations learned directly 
from the data using autoencoders or custom kernels85–87; and trans-
formations identified via equation discovery methods88. Because the 
optimal observables to approximate the Koopman operator are usually 
unknown a priori, data-driven methods require regularization and 
cross-validation to prevent overfitting89,90.

Beyond Koopman methods, other emerging operator-theoretic 
techniques explore the interplay between lifted representations and 
dynamical complexity. These include data-driven discovery of quad-
ratic forms91, neural operators for partial differential equations27,92 and 
works that combine nonlinear transformations of data with symbolic 
regression of analytical governing equations54,62. These frameworks 
share the theme that dynamical complexity can be unravelled at the 
expense of increased representational intricacy — echoing the tradeoffs 
between dimensionality and accuracy that underlie Takens’ theorem71. 
Beyond a general competition between cost and accuracy93,94, 
an inefficient choice of lifting transformations undermines inter-
pretability while needlessly increasing computational demands. 
Similar tradeoffs have been noted in other emerging methods; for 
example, neural ordinary differential equations use artificial neural 
networks to construct numerical surrogates for the right-hand sides 
of differential equations64. Original formulations of these methods 
struggled to model complex trajectories near kinetic barriers, but 
later works introduced auxiliary dynamical variables that untangle the 
trajectories in a lifted space, allowing learned flows to bypass transport 
obstacles95. Machine learning practitioners are therefore beginning to 
confront basic questions regarding transport in dynamical systems 
with coherent structures inhibiting flow — a return to the original 
impetus for the development of dynamic mode decomposition and 
a demonstration of how dynamical systems theory may inform ongoing 
practical developments in statistical learning for time series.

Outlook for future learning architectures
Historical work on chaotic dynamics may continue to provide inductive 
biases guiding future statistical learning algorithms for time series. 
Although dynamic mode decomposition and Koopman methods 
have been adapted to broad scientific problems28–30, other insights 
from dynamical systems may prove informative for general time 
series approaches even beyond the natural sciences. For example, the 
‘Hamiltonian manifold hypothesis’ argues that because, in principle, all 
natural videos implicitly illustrate the consequences of physical laws, 

models trained on sufficiently large data sets will eventually converge 
to learning latent Hamiltonian dynamics66.

On a practical level, constraints drawn from dynamical systems 
theory have begun to reveal whether the practical success of deep learn-
ing arises from unrecognized inductive biases. In deep neural networks, 
representations of inputs propagate across many layers as they are 
transformed into output labels or latent representations. Early works 
formulated multilayer artificial neural networks as continuous-time 
dynamical systems across layers96–98, a connection that has gained 
renewed relevance in methods such as neural ordinary differential 
equations, continuous normalizing flows and diffusion models19,64,99. 
The dynamics of input representations propagating across layers can 
even exhibit transient chaos before settling into fixed points associated 
with output labels100,101, and the stretching and folding of input repre-
sentations across layers gives rise to measures of model expressivity 
that resemble topological entropy in complex flows102. Gradient-based 
training methods for large models implicitly reverse the layerwise 
dynamics, motivating theoretical works that describe large models 
as infinite-dimensional linear dynamical systems103, with attendant 
implications for their ability to learn complex functions26.

Compressibility and minimal dynamical 
generators
Latent space representations imply that the apparent complexity 
of a dynamical process may depend on the choice of measurement 
coordinates. Yet, Pesin’s formula associates entropy production 
with chaotic dynamics, implying that some aspects of chaos are 
irreducible: intuitively, no invertible reparametrization can map a 
strange attractor to a limit cycle. Moreover, entropy production often 
has observable effects, such as heat production, that are independent of 
representation104,105. Classical works explore the irreducibility of chaos 
in the context of symbolic dynamics, which consider the computational 
properties of continuous systems under discrete coarse-graining7,106. 
A continuous-valued dynamical time series may be converted into a 
symbolic series by partitioning phase space and then analysing the 
properties of the symbol sequence produced by recording the partition 
label whenever the deterministic dynamics cross a boundary. Pesin’s 
formula implies that this sequence is non-repeating for any nontrivial 
partitioning of a continuous-time chaotic system. However, because 
no deterministic finite-state automaton can exhibit non-recurrent 
dynamics, only a stochastic automaton can describe the symbol 
sequence produced by partitioning a deterministic chaotic system9,107. 
Symbolic dynamics thus link the properties of analogue dynamical 
systems to digital computers.

An early motivation for symbolic dynamics was identifying com-
putational equivalence among systems23,108: setting aside differences in 
representation, are certain dynamical systems functionally identical? 
For example, the celebrated period-doubling cascade provides a uni-
versal description of bifurcations leading to chaos across diverse sys-
tems, from turbulent flows to ecological population fluctuations1,109. 
The dynamics preceding a given period-doubling bifurcation can 
be mapped to those following the bifurcation via a renormalization 
operation110, the repeated application of which drives the system 
towards an accumulation point where the period diverges and chaos 
emerges. Symbolic dynamics provides an alternative view of this pro-
cess, in which periodic dynamics correspond to a two-state autom-
aton implementing a discrete shift on a symbolic register109. Each 
bifurcation doubles the number of unique states (and thus memory 
requirements) of the automaton, but renormalization decimates the 
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register and renders the automaton invariant. At the accumulation 
point, the periodicity and thus memory requirements diverge, and the 
asymptotic entropy production becomes non-zero. Similar analyses 
based on symbolization were used by early practitioners to identify 
universal structure in diverse systems such as kicked rotors and chaotic 
scattering111,112, as well as to map experimental data sets onto character-
istic minimal systems113. Other contemporaneous works even sought 
to enumerate and categorize minimal symbolic dynamical systems 
based on their ability to support computation114,115.

Models that learn to distil dynamics
The motivation behind symbolic dynamics — reducing systems down 
to their essential components — seemingly contradicts current trends 
of scaling general-purpose learning models to ever-larger data sets. 
However, in recent years, works on model compression and distilla-
tion have revisited the original ambitions of symbolic dynamics. When 
fitting a many-parameter learning model to a given data set, patterns 
within the original data (such as symmetries or stereotypy) may be 
revealed through the analysis of the trained model. For example, many 
state-space time series models directly map continuous-time observa-
tions to discrete modes of the underlying system (Fig. 3). In particular, 
hidden Markov models treat continuous observations as emissions 
from probability distributions conditioned on sequences of discrete 
internal states45. Likewise, switching linear models fit piecewise lin-
ear operators to subsets of the full phase space of a system, thereby 
approximating the global dynamics through a series of switches among 
local linear maps39,116–118 (Fig. 4a). These approaches have proven par-
ticularly successful for data sets such as organismal behaviour and 
speech patterns, for which high measurement dimensionality meets 
low dynamical dimensionality owing to biomechanical constraints119,120. 
In such cases, latent discretization provides interpretability119,121; 

for example, in continuous-time recordings of organismal behaviour 
or neuronal activity, the latent variable sequence indicates distinct 
cognitive imperatives118,122.

Natural images and other real-world data sets often span 
low-dimensional manifolds relative to their feature set32. As a result, 
many large-scale generative learning models are designed to map 
between complex data sets and simplified latent representations; for 
example, variational autoencoders use artificial neural networks to 
map training data to a tractable probability distribution, which can then 
be sampled to generate new surrogate data (Box 2). This latent space 
can therefore illuminate the inner workings of the learning model, 
even when the learned transformation between ambient and latent 
spaces remains opaque itself. For example, several architectures apply 
constraints during learning that cause variational autoencoders to 
learn a quantized latent space123–126, in which patterns in the input data 
correspond to discrete entries within a latent codebook. These discrete 
modes reveal clusters of related training examples, making certain 
models a generalization of classical self-organizing maps127,128 (Fig. 4b). 
Beyond interpretability, imposing discretization helps large genera-
tive models avoid posterior collapse, a limitation of autoregressive 
generation in which the model begins ignoring the latent state space 
and instead relies only on the decoder to determine its output — thereby 
reducing the complexity of the generated samples15,123. To identify 
this and other failure modes, it has been proposed to use entropy 
production to identify miscalibration in generative models129.

A limitation of modern overparameterized learning models stems 
from degeneracy: many different trained models may exhibit equiv-
alent performance on a given task, thereby precluding systematic 
comparison of models across tasks or model architectures. However, 
simplified latent representations of learned dynamics can reveal 
commonalities across learning models, echoing the computational 
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Fig. 3 | State-space models generate complex dynamics. a, Components of a 
generic state-space model. b, In an autoencoder employing Sparse Identification 
of Nonlinear Dynamics (SINDY)62, multilayer perceptrons deterministically 
transform high-dimensional observations to a low-dimensional latent space, 
in which the dynamics are propagated using analytical differential equations 
learned via sparse regression from a library of known functions. c, In Latent 
Factor Analysis via Dynamical Systems (LFADS)20, neuron spiking time series are 
deterministically encoded into latent initial conditions, which are evolved using a 

second recurrent neural network, and then decoded into latent factor time series. 
These latent factors parameterize the stochastic firing rate of an inhomogeneous 
Poisson process. d, In Manifold Interpolating Optimal-Transport Flows 
(MIOFlow)99, high-dimensional gene expression measurements are encoded to 
a latent distribution that preserves the manifold diffusion distance. The latent 
measure is then propagated with optimal transport. Part b is adapted from ref. 62, 
CC BY 4.0. RNN, recurrent neural network. GRU, gated recurrent unit.
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primitives sought by symbolic dynamics. Quantized latent states can 
reveal the internal logic of black-box neural networks, by allowing 
their internal grammar to be probed with post hoc analysis118,126,130,131. 
For example, traditional recurrent neural networks are provably capa-
ble of encoding arbitrary continuous-time dynamical attractors132 and 
even discrete logic133,134, given sufficient training data and model scale. 
Trained black-box recurrent learning models can be analysed by fitting 
probabilistic automata to their latent dynamics135, and newer classes 
of generative learning models, such as attention-based transformers, 
may outperform earlier architectures because they can internally 
represent more sophisticated grammars136–138. Rather than analysing 
continuous-valued learning models post-training, some methods 
instead impose discrete dynamics directly through architectural con-
straints on the model. Emerging neuro-symbolic approaches com-
bine the trainability of continuous-valued learning models with the 
representational guarantees of exact symbolic procedures, such as 
digital logic or arithmetic, by incorporating the latter within separate 
modules134,139–142.

A drawback to combining discrete operations with continuous- 
valued model parameters stems from the difficulty of computing gradi-
ents of discrete states, which complicates the training of large models 
with gradient descent. This limitation mirrors a common shortcom-
ing of symbolic dynamical systems, for which non-differentiability 
precludes the application of mathematical tools such as linear stability 
analysis — leading some early practitioners to view symbolic dynamics 
as intrinsically computational objects that can only be understood 
through direct simulation114,143,144. End-to-end trainable learning mod-
els containing discrete modules frequently use straight-through 
estimators, in which symbolic components are treated as identity 
functions when computing gradients of the model error with respect to 
its parameters123. Other works bypass gradient-based training entirely, 
instead directly modifying the latent code within continuous-valued 
neural networks, to programme the dynamics to perform discrete 
computations145,146.

Taken together, these works illustrate how implicit or imposed 
symbolization within trainable learning models allows the generation 
of more complex and interpretable dynamics. Future works may use 
symbolic methods to automatically identify universality in generators 

of time series found by different trained learning models. For example, 
systems biology often requires comparison of gene regulatory dynam-
ics across multiple organisms. Although these measurements vary 
widely based on differences in imaging modalities and fluorescent 
reporters, symbolic distillation could identify shared latent dynamical 
motifs arising from orthologous regulatory structures147. A key con-
cept that may inform future developments in generative modelling 
is unifilarity9. Although a given time series can be mapped to multi-
ple possible state-space models, a unifilar representation comprises 
the minimal maximally predictive generator for the dynamics — thus 
facilitating comparison of generators across systems148–150. Improve-
ments in inference methods offer a key step towards extracting unifi-
lar representations consistently across data sets and trained learning  
methods151–153.

Measuring entropy production from data
Classical work on symbolic dynamics bears relevance to emerging inter-
disciplinary problems for which entropy production has physical impli-
cations. Recent studies have sought to identify macroscopic signatures 
of microscale non-equilibrium processes directly from experimen-
tal data154–157. Equilibrium thermodynamic systems exhibit detailed 
balance, in which the net flux between any pair of microstates equals 
zero. By contrast, active or living systems dissipate energy at the micro-
scale, thus producing apparent violations of detailed balance at larger 
scales. Finite-resolution time series measurements of such systems, 
such as those produced by video microscopy, exhibit signatures of 
these microscale effects when quantized in the spatial or frequency 
domains154. Non-equilibrium behaviours manifest as net circulation 
in the phase space of the coarse-grained data — in contrast to detailed 
balance, in which probability currents vanish. These methods have 
successfully identified mesoscopic non-equilibrium states in diverse 
systems, ranging from the locomotory states of swimming cells158,159 
to oxygen levels in the brain during cognitive exertion160.

Because executing computations in finite time and noisy 
environments requires energy dissipation, the physical entropy 
produced by non-equilibrium thermodynamic flows can be related 
to the information-theoretic entropy production associated with 
symbolic dynamics. This concept underlies studies that discretize 

Sequence entropy

Au
to

m
at

on
 c

om
pl

ex
ity

Cluster ID

Time series 

Sleep phase

Self-organizing map

a b c

Fig. 4 | Latent discretization and interpretability. a, Successive stages of an 
adaptive approximation algorithm that fits locally linear dynamics to parts 
of the phase space of a chaotic system. Colours indicate discrete clusters at 
different levels of approximation. Data from ref. 120. b, A continuous-valued 
learning model that creates a discrete, latent self-organizing map (right) from a 
continuous time series of sleep recordings (left). Stars in the continuous space 

correspond to centroids of similar datapoints, each associated with discrete 
nodes in the map. c, The topological complexity of probabilistic automata fitted 
to a dynamical map across a range of chaotic and periodic regimes, plotted 
against the entropy of the time series. The most structurally complex automaton 
occurs when the dynamics exhibit intermediate entropy. Part b adapted with 
permission from ref. 182, PMLR. Part c adapted with permission from ref. 9, APS.
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Box 2

Generative models of complex dynamics
A generative model pθ(x1:T) for a time series x1:T ≡ x1, x2, …, xT has the 
form15,46,197:

x x z z z∫=p p p d( ) ( ) ( ) , (2)θ T θ T T θ T T1: 1: 1: 1: 1:

in which p(z1:T) denotes the previous distribution of latent state 
series of the model, which we assume matches the temporal 
resolution of the measured time series; pθ(x1:T∣z1:T) denotes the 
likelihood of an observed time series given a latent sequence; 
and θ denotes the trainable parameters. Many time series exhibit  
a characteristic timescale τ < T over which future values become 
decorrelated from past; for deterministic chaotic time series, this 
timescale approximately comprises the Lyapunov time ≈ −τ λmax

1 . 
In this case, the likelihood exhibits conditional independence, in 
which all relevant dependence between past and future values of 
x is captured in the τ most recent timepoints:
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Inserting this expression into equation (2) and rearranging terms 
yields a general expression for a generative time series model:
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in which the first bracketed term represents the initial conditions at 
the start of the time series. The second term comprises two parts: 
an emission model for x based on the past τ values of z and x and 
a transition model implementing the latent dynamics. In most 
practical applications, τ is unknown a priori and instead represents 
an adjustable hyperparameter of the model — in forecasting, τ is the 
lookback window, and in other machine learning applications τ is 
the context length, akin to a working memory. In applications such as 
data smoothing and assimilation, the latent series z1:T may represent 
the variable of practical interest, whereas forecasting seeks to directly 
sample future states of x. For a traditional hidden Markov model, 
the transmission kernel simplifies to pθ(zt∣xt−τ:t−1, zt−τ:t−1) = pθ(zt∣zt−1). 
For models that implement deterministic dynamics (for example, 
latent ordinary differential equations), the transmission becomes 
pθ(zt∣xt−1, zt−1) = δ(zt − F(zt−1, xt−1)), in which the flow map F propagates zt−1 
to zt, potentially under external forcing by x.

Training probabilistic models requires maximizing the marginal 
log-likelihood xplog ( )θ T1:  of the training data under the learned 
parameters θ. If the underlying dynamical system is linear and all 
conditional probabilities and process noise are Gaussian, then 
equation (3) reduces to a form similar to equation (1), and the resulting 
model represents the Kalman filter198,199. The likelihood of other 

classical state-space models such as hidden Markov models may be 
trained iteratively with expectation-maximization procedures15,45. 
However, for many complicated time series, pθ(z1:T∣x1:T) becomes 
difficult to sample, and so many works approximate the posterior 
distribution using artificial neural networks. Supervised training of 
forecasting models, such as recurrent neural networks or attention-
based transformers, requires comparing the generated predictions 
of the model against ground truth future values — minimizing the 
forecast error therefore maximizes the training data likelihood. 
In unsupervised settings, training can instead proceed by comparing 
a given training example with one sampled from a nearby latent space 
location. In generative adversarial networks, training feedback is 
derived by passing the generator outputs to a separate discriminator 
that attempts to distinguish true versus sampled points200.

The marginal likelihood pθ(x1:T) is typically difficult to compute, 
and so approaches such as variational autoencoders instead 
optimize a lower bound on the marginal log-likelihood called 
the evidence lower bound201. These approaches introduce a 
second trainable model that approximates the posterior qф(z1:T∣x1:T) ≈  
pθ(z1:T∣x1:T). Training thus requires minimizing a variational bound on 
the negative log-likelihood,
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in which the latter term arises from Jensen’s inequality. We equate 
this expression with a loss function and rearrange terms to reveal an 
entropy-like expression:
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We next apply the same conditional independence assumptions 
used to derive equation (3). We neglect the boundary term by assuming 
that the loss depends negligibly on the first τ ≪ T timepoints:
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The loss therefore splits into a series of separate contributions 
from each τ-timepoint window, resembling classical state-space 
factorization of chaotic time series25. During training, the emission 
term pθ(x∣z) and approximate transition term qϕ(zt∣zt−1…) may be 
parameterized with models such as attention-based transformers 
or recurrent neural networks202. After training, forecasts may be 
generated autoregressively using equation (3). The first term 
in equation (4) corresponds to a maximum likelihood term that 
encourages accurate reconstruction of the training data, whereas 
the second term minimizes the Kullback–Leibler divergence between  
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continuous-valued measurements of active systems and then use 
existing digital compression algorithms to extract descriptive order 
parameters — such as the difference in probability between forward and 
backward sequences, a measure of irreversibility161–163. Non-equilibrium 
steady states can thus reveal information about minimal dynamical 
systems that underlie biological motifs. Emerging works on data-driven 
detection of non-equilibrium flows have begun to infer computational 
primitives of the underlying living systems156,164, particularly in systems 
known to execute computations such as neuronal ensembles160,165 or 
cellular decision-making147,159,166,167.

These works provide biophysical motivation to revisit classical 
questions regarding the physical nature of information in dynami-
cal systems that support computation4,107. In computers operating 
at finite temperatures, small-scale thermal fluctuations represent a 
precision floor. If computation is implemented with chaotic dynam-
ics, errors cascade from small to large scales at a rate that depends 
only on the Lyapunov exponents of the deterministic dynamics — and 
not on the temperature itself7. The mutual information between the 
initial and final states of a chaotic system, deemed the transinforma-
tion in early works, therefore decays over time, a form of information 
erasure that underlies the effective irreversibility of chaos8. Work 
predating the widespread study of chaos established a minimal thermo-
dynamic cost for information erasure105, a connection that influenced 
later efforts to understand computation in chaotic systems168. More 
recently, these concepts have been revisited in works that formal-
ize the non-equilibrium thermodynamics of information processing 
systems104,164,169.

Non-equilibrium thermodynamics has influenced the recent devel-
opment of practical generative models for complex data sets170,171. 
A leading approach to natural image generation is diffusion models, 
which learn to iteratively invert a diffusive flow connecting a tractable 
latent distribution to the observed distribution of natural images19. 
Training a diffusion model on natural images consists of gradually 
combining high-dimensional noise with each input image, while simul-
taneously training a set of denoising learning models to invert each 
incremental noise addition. After training, synthetic images may be 
generated by sampling an image of random noise and then applying 
the sequence of trained denoising models172. Early works on diffusion 
models noted that this sequence of intermediate operations comprises 
a non-equilibrium flow18 and that generation of new images requires 
weighted non-equilibrium sampling of rarer trajectories that lead 
to realistic natural images. Empirical studies assessing the quality of 
large, autoregressive generative models observe long-time decay in 
mutual information between input states and generated outputs129, 
a phenomenon comparable to classical transinformation erasure in 
chaotic systems7. By analogy to the data processing inequality, transin-
formation decay implies that, given knowledge of a dynamical system 
at finite precision, no statistical learning model can recover predictive 
information about the initial conditions, once a sufficient number of 
Lyapunov times have elapsed8,164.

Outlook
Much as early computers and the resulting visualizations of fractals 
inspired excitement in applying chaos to other fields173, advances in 
statistical learning have sparked renewed interest in classical ideas 
from nonlinear dynamics. Connections between these fields range from 
physics-based inductive biases on latent representations in generative 
learning models, to the identification of minimal dynamical generators 
underlying complex time series.

Future works may implicate fundamental relationships between 
the observability and representability of complex dynamics. Early 
efforts to relate chaos to computational principles related the 
apparent entropy of a system to the complexity of its underlying 
representation4,9. A system settling to a fixed point or limit cycle even-
tually ceases to produce new information because its attractor has 
been fully observed after a finite observation period148,174. Conversely, 
a completely stochastic system such as a random number generator 
seemingly produces information, but without any underlying struc-
ture. The complexity of the generator of a system plotted against the 
entropy of its outputs therefore exhibits non-monotonicity with an 
intermediate peak — suggestively termed the ‘edge of chaos’ by some 
practitioners — that represents systems that can, at different times, 
switch between fully ordered and seemingly random outputs (Fig. 4c). 
Early works considered whether this edge represents those systems 
capable of supporting information processing and intelligence114,174,175, 
a concept revisited in studies that analyse the capacity of modern 
statistical learning models176–180.

As the scale and quality of generative learning models improve, 
structural complexity compared with data randomness may emerge 
as an observable relationship between problem difficulty and model 
selection. A complexity–entropy relation could describe the intricacy 
of latent representations learned by large models in unsupervised set-
tings, or the complexity of the underlying architectures necessary to 
achieve a given accuracy on supervised learning problems. This dynam-
ical refinement of the bias–variance tradeoff could inform future 
developments, bridging Wheeler’s physical bits with the practicalities 
of modern large-scale learning systems.
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