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METHODS & TECHNIQUES

Flowtrace: simple visualization of coherent structures in biological
fluid flows
William Gilpin1, Vivek N. Prakash2 and Manu Prakash2,*

ABSTRACT
Wepresent a simple, intuitive algorithm for visualizing time-varying flow
fields that can reveal complex flow structures with minimal user
intervention. We apply this technique to a variety of biological systems,
including the swimming currents of invertebrates and the collective
motion of swarms of insects. We compare our results with more
experimentally difficult and mathematically sophisticated techniques
for identifying patterns in fluid flows, and suggest that our tool
represents an essential ‘middle ground’ allowing experimentalists to
easily determine whether a system exhibits interesting flow patterns
and coherent structureswithout resorting tomore intensive techniques.
In addition to being informative, the visualizations generated byour tool
are often striking and elegant, illustrating coherent structures directly
from videos without the need for computational overlays. Our tool is
available as fully documented open-source code for MATLAB, Python
or ImageJ at www.flowtrace.org.
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INTRODUCTION
Flow visualization is an essential technique for studying biological
processes arising in many diverse areas, including ecology (Rohr et al.,
2002), biomechanics (Bartol et al., 2016) and molecular biology (Boot
et al., 2008; Lindken et al., 2009). Observations of the trajectories of
many tracer particles – whether fluorescent beads, microbubbles,
vesicles inside a moving cell, or flocking bacteria – can reveal rich
information about the way that biological motion such as molecular
transport, ciliary flows or active force generation is coordinated over
many length and time scales (Shapiro et al., 2014; Han et al., 2015;
Deforet et al., 2012; Bharadvaj et al., 1982). Additionally, flow
visualization aids in characterization and secondary validation of many
standard techniques, such as microfluidics and flow cytometry
(Santiago et al., 1998; Eyal and Quake, 2002).
The simplest qualitative flow visualization techniques involve

observations of the motion of passive scalars, like dyes or smoke, as
they are advected by the flow. These experiments have the benefit of
being relatively straightforward to perform, and can often yield
immediate insight into the global structure and mixing properties of
a flow (Merzkirch, 2012). However, at length and time scales
dominated by diffusive effects, or in flows characterized by large
separations in the time scales of different processes, the results of
such studies can be difficult to interpret (Miyake et al., 1993; Miles
and Lempert, 1997). As a result, in many contexts, quantitative

flow-characterization techniques based on the motion of tracer
particles are preferable (Bayraktar and Pidugu, 2006;Mercado et al.,
2012; Kertzscher et al., 2008).

However, standard quantitative flow-visualization techniques –
particle tracking and particle image velocimetry (PIV) – are
sufficiently difficult to implement and optimize that these
rigorous fluid dynamical visualization techniques remain
prohibitive in many experimental contexts (Miles and Lempert,
1997). While PIV and related techniques have been widely applied
and optimized for certain biological systems, such as the study of
fish swimming (Stamhuis and Videler, 1995) or blood flow
mechanics (Bharadvaj et al., 1982), in less-established contexts
these techniques require specialized modifications of apparatus such
as laser light sheets to be constructed (Lindken et al., 2009; Adrian
and Westerweel, 2011). As a result, system-specific techniques are
often necessary (Stamhuis et al., 2002), particularly when particle
motion is only partially visible in the data, such as from image
streaks (Santiago et al., 1998) or out-of-focus drift due to limited
depth of field (Olsen and Adrian, 2000). This issue is even more
prominent for flows in non-traditional media, such as in the
collective motion of flocks and herds (Garcimartín et al., 2015;
Attanasi et al., 2014a,b; Vicsek and Zafeiris, 2012).

Nonetheless, many standard concepts in fluid mechanics – such as
vortices, jets and turbulence – are widely known to researchers
throughout the sciences, who may recognize the likely presence of
these features in their data even without resorting to quantitative flow-
characterization tools (Rau et al., 2006; Hejnowicz and Kuczyńska,
1987). This suggests that simpler flow-visualization tools are
necessary for systems in which dye-based qualitative techniques are
unavailable, but quantitative tracer–particle studies are unnecessary.

Here, we describe Flowtrace, an algorithm and associated open-
source tool that can assist in identifying characteristic flow structures in
experimental videos. This primarily qualitative technique is sufficiently
straightforward and intuitive to be used either as a primary analysis tool
for presence/absence studies or tomotivate the use ofmore complicated
flow-quantification methods. The technique is based purely on image
processing of the input data, rather than numerical reconstruction of
scalar fields like vorticity, allowing it to be used as a straightforward
‘first pass’ characterization technique for biological systems where
traditional techniques are either unnecessary to support qualitative
observations or prohibitively difficult because of the length and time
scales involved. While Flowtrace is a straightforward algorithm, to our
knowledge it has not been reported or widely adopted in the literature –
and, importantly, we find that it has surprising utility for studying flow
patterns in a wide range of biological data sets.

MATERIALS AND METHODS
Algorithm
The algorithm generalizes a common technique for generating long-
exposure photographs from videos, in which the maximum (or
minimum) intensity projection of a time series of images is taken inReceived 8 May 2017; Accepted 13 July 2017
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order to generate pathlines for bright objects moving against a dark
background – resulting in ‘motion streaks’ across the image
(Shapiro et al., 2014). This technique has previously been used to
create star trails, a popular astronomical visualization generated by
taking the maximum intensity projection of a stabilized video of the
night sky (West and Cameron, 2006 preprint).
Flowtrace primarily extends this technique by using a single long

experimental video, and then iteratively taking the maximum
intensity projection of small groups of successive video frames in
order to generate sequential images showing pathlines at different
times. The resulting time series of pathline images reveals how the
shapes of the pathlines change over time. For example, in a 100
frame raw experimental video, a Flowtrace video with 30 frame
traces consists of the maximum intensity projection of frames 1–31,
2–32, 3–33, etc., and so forth. The sequence ends when frames 70–
100 are projected, resulting in a 70 frame video. In addition to this
basic operation, various other operations can be combined with the
maximum intensity projection operator in order to yield improved
results. The process is illustrated graphically in Fig. 1C.
Symbolically, let each frame of the movie be a vector of pixel

values and locations, vij[t], where t=1,2,…N represents the index of
a frame in a video consisting of N frames, and i and j denote the
coordinates of a pixel in the image. Suppose that the tracer particles
are brightly colored objects moving against a dark background. In
this case, a series of maximum-intensity projections, p[t], may be
defined in terms of a forward convolution operator:

p½t" ¼ ðP%vÞ½t"; ð1Þ

where:

ðPij%vijÞ½t" ; max
t0[f1;2;...;Mg

vtþt0
ij ; ð2Þ

whereM<N is some subset of the frames in the video. As the time index
t ‘slides’ forward across successive indices 1,2,3,…, the maximum
intensity projection is taken across successive runs of M frames that
each differ by two images (the first and the last). This results in a set of
maximum intensity projections, ptij, t=1,2,…,N−M, that constitute a
new video generated from the original dataset. Importantly, the number
of frames in the generated video (N−M) is almost equal to the number
of frames in the original video (N). In this paper, we refer to each
subsequence ofM images as a substack, and the sequence of positions
taken by a single particle moving across M frames as a pathline. The
parameterM, the time scale over which particle pathlines are visualized
in each frame, represents the only parameter that the user must specify
in order to use the tool. For a time series of images taken with a fixed
time spacingΔt (equivalent to 1/frame rate), the total pathline projection
time is defined as τ≡MΔt.

During convolution, the projection operator P ‘slides’ across the
entire sequence of frames, operating on the video in overlapping sets
of M frames. This operator can be composed with other pre-
processing operations in order to achieve different effects; in the
code described below, other operations defined include median
subtraction (to remove slowly moving objects), color inversion (for
dark objects moving against a lighter background), differential
weighing (coloring or darkening each frame in the M frame
sequence a different amount, in order to show a gradient across the

A

B

C

Fig. 1. The Flowtrace algorithm. (A) Three stills from a
Flowtrace video of the feeding currents generated by the
larva of the starfish Patiria miniata (Movie 1 taken from
Gilpin et al., 2017; τ=3 s, time points=0, 30, 90 s, scale bar
500 μm). (B) The gyration of the protozoan Stentor sp. as
it filters water containing 6 μm beads (Movie 2; τ=3 s, time
points=0, 6.5, 18 s, scale bar 175 μm). (C) A false-color
detail from B illustrating the ‘sliding projection’ used by
Flowtrace to generate pathlines (τ=3 frames).
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pathlines indicating time) and pairwise differencing (to isolate
objects that move faster than 1 pixel per frame). Each of these
operations symbolically represents composition before convolution,
such that the final image series is {(P (G)×v}[t], where G is the
pre-processing operation.

Software package and options
The algorithm is implemented as an open-source package for
MATLAB, Python or ImageJ at www.flowtrace.org. Full tutorials
and sample image sets are provided there. Table 1 summarizes
the primary user-specified arguments and options available for the
code; optional arguments are passed as a struct object in MATLAB, as
keyword arguments in Python, and as checkboxes in a GUI for ImageJ.
The primary options for the software involve removal of

background drift and crossing pathlines, which complicate
interpretation of the videos. Oftentimes a dataset features two
well-separated velocity scales: one for advected tracer particles and
one for background drift, bulk flow, etc. In these cases, Flowtrace
performs best when the projection time τ is sufficient for fast
particles to travel far within the field of view, while relatively slow
objects move very little. This is true for the pathlines shown for the
two feeding current-generating organisms shown in Fig. 1, for
which τ is long compared with the mean transit time of tracer
particles, but short compared with the gradual motion of each
organism’s body. As a result, features of each organism’s anatomy
remain sharp in the image. However, in many cases particle
advection time scales are not well separated from background
motion (resulting in motion blur for slowly moving objects) or
stationary objects and obstacles in the image obscure the pathlines.
In these cases, it is useful to apply a background subtraction
operation to each substack before performing the projection (the
‘take_diff’ option in the software). For objects moving slowly
relative to the tracer particles, but fast enough to exhibit noticeable
motion blur, the most aggressive background-subtraction option
available in the software takes the pairwise differences among all

consecutive images before applying the projection. However,
tracer particles that move less than a pixel between successive
frames will also vanish. Alternate background subtraction options in
Flowtrace include subtracting either the median or the first image
from the stack before projection (‘subtract_median’ or
‘subtract_first’, respectively). Occasionally, it is convenient to
highlight the direction of time in the pathlines, particularly when
still frames from the output time series are used for analysis. In this
case, directionality can be indicated by applying a color gradient
across time (‘color_series’), or by applying a linear intensity
gradient (‘fade_tails’).

Software availability
The source code for Flowtrace is available for Fiji, ImageJ, Python
2, Python 3 and MATLAB. The full code base, as well as
screenshots, tutorials and installation instructions, may be accessed
at www.flowtrace.org. The primary user arguments and options for
the code are summarized in Table 1. Optional arguments are passed
as struct objects in MATLAB, as keyword arguments in Python and
as GUI checkboxes in ImageJ.

The individual GitHub repositories and version histories for the three
implementations are open for pull requests and forks on GitHub at
https://github.com/williamgilpin/flowtrace_imagej, https://github.com/
williamgilpin/flowtrace_python and https://github.com/williamgilpin/
flowtrace_matlab. A gallery of videos generated using the technique is
available at www.flowtrace.org/flowtrace_docs/gallery.html.

Experimental methods
For bead studies, organisms were placed in a droplet of water (or an
appropriate saline buffer) on a glass slide. A 1:100 dilution mixture
of 6 μm polystyrene beads was placed into the droplet and gently
mixed using a pipette tip. A coverslip was prepared by dragging
each of its corners through modeling clay, resulting in ‘feet’ of
500–600 μm height. The coverslip was then placed on the slide feet-
down, such that the organism was confined between the slide and
the coverslip. Images were captured using an ORCA C11440 CCD
(for color panels, a Canon EOS T3i DSLR or an Apple iPhone 5s
was used). Videos were split into single frames using Fiji, and the
resulting time series of images were processed using the Flowtrace
software. The three implementations (Fiji/ImageJ, MATLAB, and
Python 2 and 3) yielded the same results. Methods specific to
individual datasets are described below.

Movie 1: an 8 week old starfish larvae modulates its swimming
currents in order to increase the vorticity it generates, and thus its
feeding rate. This video is taken from Gilpin et al. (2017), which
discusses this phenomenon in more detail. This video was captured at
4×magnification and 20 frames s−1 on an invertedNikonmicroscope
with dark field illumination; the water contains 6 μm beads. The
projection time is τ=3 s, and the video is shown at 8× true speed.

Movie 2: Stentor sp. generates a large dipolar feeding current using
its primary ciliary band. This current is periodically disrupted when
the organism rotates its stalk to invert the position of the ciliary
stripes. A full 180 deg rotation of the organism (and its associated
feeding currents) is shown in the video. Images were captured at 30×
magnification and 20 frames s−1 on an inverted Nikon microscope;
the water contains 6 μm beads as well as algae and other detritus
advected by the feeding current. In Flowtrace, ‘subtract_median’was
used to remove background objects. The projection time was τ=3 s,
and the video is shown at 8× true speed. This movie was generated
from a new dataset taken originally for this work.

Movie 3: a hyperbolic stagnation point represents a transport
barrier for the cerebrospinal fluid in a mouse brain ventricle.

Table 1. Options and parameters for Flowtrace

Required argument (type) Description

frames_to_merge (integer) The number of input frames to combine per
output frame

image_dir (string) The location to save output files

Optional argument (type) Description (default)

invert_color (boolean) For images comprising dark objects moving
against a light background (false)

subtract_median (boolean) Subtract the median of the substack from the
substack before projection (false)

take_diff (boolean) Take the pairwise differences of images before
projection (false)

subtract_first (boolean) Subtract the first image of each substack from
the substack before projection (false)

add_first (boolean) Add the first image of each substack to each
projected image (false)

color_series (boolean) Apply a color gradient across pathlines (false)
frames_to_skip (integer) Number of alternate frames to omit from each

projection (0)
use_parallel (boolean;
Python only)

Use multithreading across cores (false)

max_cores (integer;
Python only)

The maximum number of threads to use when
running in parallel (4)

fade_tails (boolean;
MATLAB only)

Apply an intensity gradient across pathlines
(false)

Full documentation for individual versions of Flowtrace for ImageJ, Python and
MATLAB can be found at www.flowtrace.org

3413

METHODS & TECHNIQUES Journal of Experimental Biology (2017) 220, 3411-3418 doi:10.1242/jeb.162511

Jo
ur
na

lo
f
Ex

pe
ri
m
en

ta
lB

io
lo
gy

http://www.flowtrace.org
http://www.flowtrace.org
https://github.com/williamgilpin/flowtrace_imagej
https://github.com/williamgilpin/flowtrace_imagej
https://github.com/williamgilpin/flowtrace_python
https://github.com/williamgilpin/flowtrace_python
https://github.com/williamgilpin/flowtrace_python
https://github.com/williamgilpin/flowtrace_matlab
https://github.com/williamgilpin/flowtrace_matlab
https://github.com/williamgilpin/flowtrace_matlab
http://www.flowtrace.org/flowtrace_docs/gallery.html
https://vimeo.com/190107827
https://vimeo.com/144085848
https://vimeo.com/203738517
http://www.flowtrace.org


Original video taken by Faubel et al. (2016) using 1 μm fluorescent
spheres as tracer particles. In Flowtrace, ‘subtract_median’was used
to remove background objects and gradual variations in overall
intensity across the image. The projection timewas τ=0.67 s, and the
video is shown at 1× true speed.
Movie 4: a sea anemone pumps seawater into its body cavity,

creating a short-lived jet that entrains particles. The animal was
suspended in filtered seawater containing 6 μm beads. Videos were
taken at 1 frame s−1 on an ORCA C11440 CCD and Nikon
microscope with 1×magnification. In Flowtrace, ‘subtract_median’
was used to remove background objects, and the final projected
movies were color inverted to ease visualization. The projection
time was τ=240 s, and the video is shown at 48× true speed. This
movie was generated from a new dataset taken originally for this
work.
Movie 5: a 2 day old veliger larva of a moon snail generating a

steady dipolar feeding current, punctuated by brief interruptions.
The animal was suspended in filtered seawater with red 6 μm beads.
Images were taken at 30 frames s−1 on a Canon EOS T3i DSLR and
Nikon microscope with 10× magnification. In Flowtrace,
‘subtract_median’ was used to remove background objects. The
projection time was τ=2 s, and the video is shown at 8× true speed.
This movie was generated from a new dataset taken originally for
this work.
Movie 6: a swarm of flying midges gradually tightens in shape.

Original video taken at 170 frames s−1 by Attanasi et al. (2014a,b).
In Flowtrace, ‘subtract_median’ and ‘color_series’ were enabled in
order to remove background objects and color code the resulting
images by time. The projection time was τ=333 ms, and the video is
shown at 1/6× true speed.
Movie 7: a school of 70 fish undergoes a spontaneous transition

from a ‘milling’ to a ‘swarming’ behavioral state. Original video
taken by Tunstrøm et al. (2013). In Flowtrace, ‘subtract_median’
and ‘fade_tails’were enabled in order to remove background objects
and intensity code the resulting images by time. The projection time
was τ=5.33 s.
Movie 8: The feeding current of the sessile, predatory protozoan

Stentor in a sample of pond water. The large dipolar entrainment
flow field generated by the organism captures some particles, but
some smaller algae and other swimming organisms in the water
appear to easily escape the vortices. This video was captured at 4×
magnification and 20 frames s−1 on an inverted Nikon microscope
with dark field illumination. The projection time was τ=3 s, and the
video is shown at 8× true speed. This movie was generated from a
new dataset taken originally for this work.

Comparison and validation with other techniques
Quantitative flow visualization involves using image analysis
techniques to take discrete integral transforms of a dataset, either
for the sake of performing convolution in order to extract a velocity
field (PIV) or in order to establish unique identities of objects (as in
particle tracking velocimetry, PTV). In these methods, an underlying
model of the flow is assumed by the technique, and coherent
structures may be visualized either by numerically integrating
trajectories or by defining a spatially resolved scalar field (such as
the strain or vorticity) and plotting contours. The techniques
compared here (PIV and PTV) are subject to the basic drawbacks:
they can be computationally demanding, and require the experimental
dataset to have certain properties (such as narrow depth of field or
high tracer particle density) in order to be well posed.
Fig. 2 compares pathlines generated by Flowtrace with several

common methods of detecting coherent structures based on PIV

data. A video on larval starfish swimming published in a previous
study is used as a test dataset (Gilpin et al., 2017). In the referenced
video, Flowtrace shows a stable arrangement of slowly varying
vortices around the periphery of a starfish larva held stationary (see
fig. 1 and video 1 of Gilpin et al., 2017).

Vorticity
One simple type of flow visualization involves isocontours of
vorticity and other scalar fields derived from PIV. For the analysis in
Fig. 2C, the vorticity correctly localizes to regions of the flow
corresponding to steady vortices, and the color and intensity of the
shaded regions match the apparent local rotation directions and
intensity based on the length and direction of the pathlines. Thus, for
persistent vortex structures, the vorticity field and the pathlines
agree.

However, it is apparent in Fig. 2C that, as a metric based on
taking the spatial derivative of experimental data, the vorticity
has large spatial noise, despite the velocity field having been
averaged across time and space to reduce correlation errors in the
PIV (Batteen and Han, 1981). Whether noise comes from the
precision of the PIV measurement or true fluctuations in the
amplitude of the velocity field across space, this noise
complicates interpretation of basic qualitative questions, such
as the exact locations and relative sizes of the vortical regions.
Because calculation of vorticity relies upon some underlying
assumptions regarding the flow in the form of the relative mesh
size and spatial and temporal averaging applied to the PIV
dataset, vorticity and similar finite-difference metrics can
misplace the center point or relative scale of vortex structures
(Foucaut and Stanislas, 2002). Thus, for qualitative observations
in slowly varying flows, Flowtrace may be preferable for
identifying coherent structures like vortices.

However, a case where vorticity plots and Flowtrace yield
different qualitative visualizations arises in quickly time-varying
flows, in which vorticity may be short lived enough that particles
do not have sufficient time to circumscribe vortices. For
example, studies of the swimming flagellate Chlamydomonas
report closed streamlines both in the instantaneous velocity field
(Guasto et al., 2010) and in the velocity field averaged across
multiple flagellar beat cycles (Drescher et al., 2010). However,
because of the time-varying structure of this field during the beat,
areas of high vorticity move between the fore and aft of the
organism during the swimming stroke (Guasto et al., 2010), and
so pathlines generated by Flowtrace would show non-closed and
potentially overlapping paths. Thus, plotting a scalar field from
PIV (like vorticity) may be preferable when the time scale of
particle advection within the field of view is comparable to the
time scale of flow variation. A similar argument would apply to
other common scalars computed as the finite differences of PIV
data, such as the strain and shear (Colin et al., 2010; Kiørboe and
Visser, 1999), as well as more sophisticated techniques based on
computing Eulerian quantities like the local acceleration (Kasten
et al., 2011; Van Gelder, 2012).

Finite-time Lyapunov exponents
More sophisticated tools for the identification of structures in time-
varying flows are based on the detection of Lagrangian coherent
structures (LCS), which are bounded regions of a flow with
dynamics that are qualitatively distinct from the rest of the flow.

For example, at high Reynolds number, vorticity is conserved and
remains localized, causing patches of vorticity that remain intact as
they are advected by the flow. In this case, the patches of vorticity
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essentially act as tracers, even in turbulent conditions (Newton, 2013).
Vortices at high Reynolds numbers thus represent examples of
‘attracting LCS’, which are bounded regions that tend to pull
trajectories of neighboring particles towards themselves, and in some
cases are mathematically equivalent to the ‘islands of stability’
observed in the solutions of classical dynamical systems exhibiting
chaos (Beron-Vera et al., 2010). Based on this analogy, LCS can be
identified using the finite-time Lyapunov exponent (FTLE), a
computationally efficient approximation of the classical Lyapunov
exponent, which measures the tendency of trajectories originating
from a given location to diverge or converge over time (Shadden et al.,
2005). The derivation and properties of the FTLE are discussed in
detail in many recent reviews (Haller, 2015; Peacock and Dabiri,
2010); for our purposes, it is a scalar field defined across space that can
be used to identify regions in a flow that attract or repel trajectories.
While LCS are fundamentally a property of the underlying

velocity field present in a system, they can often be visualized
through the manner in which they advect passive tracers – hence,
coherent flow structures such as smoke rings or whirlpools are
easily visualized (Haller, 2015). Thus, the FTLE field should detect
key features visible in the pathline output of Flowtrace, such as
vortices and stagnation points.
Fig. 2B,D shows the result of computing the FTLE field for the

starfish dataset. First, PIV was applied to the original video in order

to generate an estimate of the velocity field as a function of time at
various points on a fixed spatial mesh (Taylor et al., 2010). Then,
the FTLE field was generated by interpolating this field and
numerically integrating trajectories originating from various points
in the image, using a tool developed by Shadden et al. (2006). The
FTLE field was then smoothed with a median filter with a width
equal to the size of the lattice on which the PIV field was calculated,
in order to remove artifacts in the field arising from discretization of
space. The resulting scalar field contains both positive (red) and
negative (blue) values, and in Fig. 2 it is overlaid on the first frame
of a Flowtrace video for the same dataset.

Fig. 2 shows FTLE fields for both forwards (Fig. 2D) and
backwards (Fig. 2B) integration schemes, which respectively detect
repelling and attracting LCS in the flow field. In both cases, the
regions between adjacent vortices display the highest absolute
intensity. Diverging streamlines produce regions with high positive
FTLE values (red regions in the forward time plot), while
converging streamlines produce regions with large negative FTLE
values (red regions in the backward time plot). The ‘zero FTLE’
contours clearly run orthogonally to the pathlines shown by
Flowtrace, as would be expected for a quasi-steady flow. The peaks
andminima of the FTLE field roughly correspond to the locations of
stagnation points along the boundary of the animal, with stagnation
points that result in jet-like ejections of water from the surface

1 350 µm0–1

A

DC

B Fig. 2. Comparison of Flowtracewith other
methods for identifying coherent
structures. (A) Flowtrace frame;
(B) backward time finite-time Lyapunov
exponent (FTLE); (C) vorticity; (D) forward
time FTLE. All color plots have been rescaled
so that the extremal absolute value of the
scalar field being plotted corresponds to an
intensity of 1, such that all color maps have
the same range. Deep red regions in
backward-time FTLE (B) correspond to
attracting coherent structures, whereas deep
red regions in forward-time FTLE (D)
correspond to repelling structures. All colored
scalar fields have been median smoothed
with a spatial kernel of a size smaller than the
particle image velocimetry (PIV) mesh.
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having large positive FTLE regions, and stagnation points that pull
water into the surface having large negative FTLE regions. The
FTLE field and the pathlines shown by Flowtrace thus yield good
agreement.
However, the FTLE field by itself is not straightforward to

interpret – isocontours of the computed field do not necessarily
indicate separatrices in the flow field. This is due, in part, to the
lack of guaranteed coincidence of FTLE ridges with true
material lines (transport barriers) in finite-time simulations
(Johnson and Meneveau, 2015). In general, there is some
ambiguity regarding the optimal algorithm for the definition of
‘ridges’ in an FTLE field (Haller, 2015, 2011). However, for a
quasi-static flow field such as the one shown in Fig. 2,
Flowtrace is able to clearly delineate pathlines belonging to
different vortex regions, because the pathlines show true
transport in the system.
However, recently, more sophisticated topology-based

techniques based on the adjacency matrix associated with

neighboring trajectories (instead of changes in the Euclidean
distance) have allowed coherent structures to be determined from
sparser datasets (such as those generated by particle tracking
experiments) (Schlueter-Kuck and Dabiri, 2017). However,
identification of structures with high spatial resolution still
requires interpolation of the velocity field and subsequent
integration of trajectories, leading it to be susceptible to the same
limitations as the above.

Finally, the quality of the FTLE field and the associated ridges
and minima that signal the presence of LCS is highly dependent on
the quality and resolution of the PIV data from which the field is
generated. Thus, LCS detection does not solve the original issue that
motivates the use of Flowtrace – that of creating a simple and
straightforward qualitative visualization technique that requires
comparatively less experimental optimization. However, it does
confirm that, at least for quasi-static cases, Flowtrace is capable of
identifying transport barriers in a flow, which are essential for
gaining qualitative understanding.

A

B

C

Fig. 3. Application of Flowtrace to flow visualization problems. (A) Transport of particles by the cerebrospinal fluid in a mouse’s brain reveals the
presence of a nearly stationary hyperbolic stagnation point flow. Because of high particle density, the color of the original video has been inverted to ease
visualization (Movie 2 generated from data by Faubel et al., 2016; τ=0.67 s, time points=0, 3, 6 s, scale bar 50 μm). (B) A sea anemone taking in a jet of
water containing 6 μm beads. As above, the video has been inverted to ease visualization (Movie 4; τ=4 min, time points=0, 5.4, 18 min, scale bar 1 mm).
(C) A swimming moon snail larva, with 6 μm beads mixed into the water (Movie 5; τ=2 s, time points=0, 6, 20 s, scale bar 350 μm).
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RESULTS AND DISCUSSION
Application of Flowtrace to a variety of biological systems provides
surprising insight into the complicated dynamics of unsteady flows.
By varying the projection time interval, τ (and thus the pathline
lengths), biological phenomena may be investigated over a wide
range of length and time scales. Detailed methods for each of the
experiments and Movies are discussed in Materials and Methods.
Fig. 1A shows three representative frames from a Flowtrace

movie of a starfish larva (Patiria miniata), which in previous work
we have shown creates dynamic vortex arrays around its body as it
continuously adjusts its feeding currents (Gilpin et al., 2017). The
full Flowtrace movie from which Fig. 1A is generated shows the
animal smoothly alternating between distinct swimming and
feeding vortex patterns, indicating how these dynamic flow
patterns represent distinct behaviors controlled by the animal
(Movie 1; discussed further in Gilpin et al., 2017). Fig. 1B shows
similar ciliary flows generated during stationary filter feeding by the
protozoan Stentor sp. (size ∼50 μm), which generates a toroidal
current that draws small prey towards its stalk. The videos and
images (τ=3 s) capture the helical motion of algae particles as the
organism slowly rotates its stalk (Movie 2), and a larger field of
view shows the effect of the feeding current on microorganisms
swimming nearby (Movie 8).
Flowtrace can be applied to any standard experimental data in

which tracer particles (such as fluorescent beads) travel for an
extended period in the imaging plane. Application of the tool to data
from a recent study of ciliary currents generated in a mouse brain
revealed the presence of a prominent hyperbolic stagnation point
associated with a transport barrier in the cerebrospinal fluid, an
observation identified using full particle tracking in the original
study (Faubel et al., 2016) (Fig. 3A, Movie 3). A similar technique
allows identification of coherent flow structures formed by the sea
anemone Aiptasia pallida (∼1 mm): an inverted-color Flowtrace
video (τ=4 min) shows the breakup of a water jet as the animal
peristaltically pumps water into its body cavity (Fig. 3B, Movie 4).
In a color DSLR video of the larva of the moon snail Crepidula
fornicata (∼1 mm), Flowtrace creates a color video by projecting
each channel separately, generating a true color video of the
formation of the dipolar flow field created by the swimming animal
(Fig. 3C, Movie 5).
In addition to passive fluid tracer particles, Flowtrace can be

applied to active particles and ecological data. For these datasets,

applying a color or brightness gradient along the pathlines proves
beneficial when many pathlines overlap as a result of particles
appearing in the same location at different times. Fig. 4 shows an
application of two such cases taken from the collective motion
literature (Attanasi et al., 2014a,b; Tunstrøm et al., 2013). In a
swarm of flying midges (Dasyhelea flavifrons, flock ∼1 m wide),
Flowtrace with color gradient across time allows rapid tightening of
the flock to be visualized (Fig. 4A, Movie 6, raw data taken from
Attanasi et al., 2014a,b). Similarly, in a video of 70 freely
swimming minnows (Notemigonus crysoleucas), Flowtrace can
be used to identify changes in the schooling behavior: the school
undergoes a transition from a visibly rotary ‘milling’ state, to a
directionally aligned collective state, to a disordered ‘swarm’ state
(Fig. 4B, Movie 7, raw data taken from Tunstrøm et al., 2013).
Relative to the raw video, the Flowtrace video makes it easier to
visualize the onset of these transitions, which arise when a subset
of individuals spontaneously polarizes and travels in a single
direction.

The simple sliding projection technique used by Flowtrace
appears to be largely unknown in the biological sciences and fluid
dynamics literature, despite the ease with which it can be
implemented. Flowtrace can reproduce the core qualitative
conclusions of several studies, including our recent study on
larval starfish swimming (Gilpin et al., 2017), in which the key
observation of distinct feeding and swimming vortex arrays
generated by the animals is readily seen in Flowtrace videos but
difficult to discern using PIV, the standard method of analyzing
such data (Lindken et al., 2009). The algorithm works particularly
well for studies of organismal feeding currents, in which there is a
wide separation between the time scales of advection and behavior-
driven flow variation – such that tracer particles have sufficient time
to map out the structure of the flow field before the field undergoes
further variation. Moreover, feeding phenomena typically involve
small length scales and long time scales, for which traditional dye
advection visualization techniques would fail because of rapid
diffusive mixing.

Flowtrace has been compared with other techniques for
identifying structures in fluid flows, and it can qualitatively
reproduce the results of more sophisticated dynamical analysis
using either vorticity contours or FTLE (Haller, 2015; Shadden
et al., 2006). The tool is available in efficient, multithreaded
implementations for Fiji/ImageJ, Python 2 and 3, and MATLAB. A

A

B

Fig. 4. Flowtrace applied to collective animal
motion. (A) Three frames from a movie of a flock of
midges, with pathlines temporally color coded from
blue to orange (Movie 6 generated from data by
Attanasi et al., 2014a,b; τ=333 ms, time points=0,
0.66, 1.3 s, scale bar 60 mm). (B) A transition from
‘milling’ to ‘swarming’ behavior in a school of 70
minnows (Movie 7 generated from data by Tunstrøm
et al., 2013; τ=5.33 s, time points=0, 9.1, 17.1 s, scale
bar 0.5 m).
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broad community – from microscopists to ecologists to fluid
physicists –may use and even further improve Flowtrace, and so the
full source code and documentation are available at www.flowtrace.
org or for pull requests on GitHub.
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